Menu Close

a-Determine-the-area-of-the-largest-rectangle-that-can-be-inscribed-in-the-circle-x-2-y-2-a-2-b-Name-the-rectangle-so-formed-




Question Number 56763 by Tawa1 last updated on 23/Mar/19
(a) Determine the area of the largest rectangle that can be  inscribed in the circle  x^2  + y^2   =  a^2  .    (b) Name the rectangle so formed
$$\left(\mathrm{a}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{rectangle}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\:=\:\:\mathrm{a}^{\mathrm{2}} \:. \\ $$$$ \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Name}\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{so}\:\mathrm{formed} \\ $$
Answered by kaivan.ahmadi last updated on 23/Mar/19
S=4x(√(a^2 −x^2 ))⇒S′=4(√(a^2 −x^2 ))+((−4x^2 )/( (√(a^2 −x^2 ))))=  ((4a^2 −4x^2 −4x^2 )/( (√(a^2 −x^2 ))))=0⇒8x^2 =4a^2 ⇒  x^2 =(a^2 /2)⇒x=(a/( (√2)))⇒  S=2(√2)a(√(a^2 −(a^2 /2)))=2(√2)a(√(a^2 /2))=2a^2
$${S}=\mathrm{4}{x}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\Rightarrow{S}'=\mathrm{4}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }+\frac{−\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}= \\ $$$$\frac{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}=\mathrm{0}\Rightarrow\mathrm{8}{x}^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \Rightarrow \\ $$$${x}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\Rightarrow{x}=\frac{{a}}{\:\sqrt{\mathrm{2}}}\Rightarrow \\ $$$${S}=\mathrm{2}\sqrt{\mathrm{2}}{a}\sqrt{{a}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}=\mathrm{2}\sqrt{\mathrm{2}}{a}\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}}=\mathrm{2}{a}^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by kaivan.ahmadi last updated on 23/Mar/19
Commented by Tawa1 last updated on 23/Mar/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *