Question Number 58259 by behi83417@gmail.com last updated on 20/Apr/19
$$\boldsymbol{\mathrm{a}}\:\:.\int\:\:\frac{\boldsymbol{\mathrm{dx}}}{\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}+\mathrm{3}\boldsymbol{\mathrm{tg}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}=? \\ $$$$\boldsymbol{\mathrm{b}}\:\:\:.\int\frac{\:\:\mathrm{1}+\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}}{\mathrm{1}+\sqrt{\boldsymbol{\mathrm{x}}}+\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{x}}}+\sqrt[{\mathrm{6}}]{\boldsymbol{\mathrm{x}}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{c}}\:\:\:\:\:.\int\:\:\frac{\boldsymbol{\mathrm{cosx}}}{\mathrm{1}+\boldsymbol{\mathrm{cos}}\mathrm{2}\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{d}}\:\:\:\:\:.\int\:\:\:\frac{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}.\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$
Commented by maxmathsup by imad last updated on 21/Apr/19
$${yes}\:{sir}\:{i}\:{have}\:{forgotten}\:\sqrt{\mathrm{3}}\:\:{but}\:{give}\:{opportonity}\:{to}\:{do}\:{method}\:{sometimes} \\ $$$${i}\:{feel}\:{tired}\:\:{because}\:{of}\:{the}\:{work}\:\:{thanks}.. \\ $$
Commented by behi83417@gmail.com last updated on 21/Apr/19
$${dear}\:{abdo}!\:{thank}\:{you}\:{for}\:{so}\:{hard}\:{and}\:{nice}\:{work}. \\ $$$${excuse}\:{me}\:{sir}.{something}\:{went}\:{wrong}\:{in} \\ $$$${line}#\mathrm{3}\:{from}\:{above}. \\ $$$$\Rightarrow\mathrm{2}\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{3}}.{cost}\:,{is}\:{right}. \\ $$
Commented by maxmathsup by imad last updated on 20/Apr/19
$$\left.{c}\right)\:{let}\:{I}\:=\int\:\:\frac{{cosx}}{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{dx}\:\Rightarrow\:{I}\:=\int\:\:\:\frac{{cosx}}{\mathrm{1}+\mathrm{2}{cos}^{\mathrm{2}} {x}\:−\mathrm{1}}\:{dx} \\ $$$$=\int\:\:\:\:\:\frac{{cosx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}}\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\frac{{dx}}{{cosx}}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }} \\ $$$$=\:\int\:\:\:\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:=\int\:\left(\frac{\mathrm{1}}{\mathrm{1}−{t}}\:+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt}\:={ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\:+{c}\:={ln}\mid\frac{\mathrm{1}+{tan}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}−{tan}\left(\frac{{x}}{\mathrm{2}}\right)}\mid\:+{c} \\ $$
Commented by maxmathsup by imad last updated on 21/Apr/19
$${let}\:{A}\:=\int\:\frac{{sin}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}{cos}^{\mathrm{2}} {x}}{dx}\:=\int\:\:\:\frac{\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}{\:\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}\:{dx} \\ $$$$=\int\:\:\:\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{3}}{cos}\left(\mathrm{2}{x}\right)}{dx}\:=_{\mathrm{2}{x}\:={t}} \:\:\:\int\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}+\sqrt{\mathrm{3}}{cos}\left({t}\right)}\:\frac{{dt}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}{cost}}\:{dt}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{\mathrm{1}−\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)+\sqrt{\mathrm{3}}−\sqrt{\mathrm{3}}{u}^{\mathrm{2}} \right)}\:{du} \\ $$$$=\int\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} }{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\:+\left(\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}\right){u}^{\mathrm{2}} \right)}\:{du}\:\:{let}\:{decompose} \\ $$$${F}\left({u}\right)\:=\frac{\mathrm{2}{u}^{\mathrm{2}} }{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)\left\{{au}^{\mathrm{2}} \:+{b}\right\}}\:\:\:\:\:\left({with}\:{a}=\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}\:\:{and}\:\:{b}=\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}\right) \\ $$$${F}\left({u}\right)\:=\:\frac{\alpha{u}\:+\beta}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:\:+\frac{{cu}\:+{d}}{{au}^{\mathrm{2}} \:+{b}}\:\:\:{we}\:{have}\:{F}\left(−{u}\right)={F}\left({u}\right)\:\Rightarrow \\ $$$$\frac{−\alpha{u}\:+\beta}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{−{cu}\:+{d}}{{au}^{\mathrm{2}} \:+{b}}\:={F}\left({u}\right)\:\Rightarrow\alpha={c}\:=\mathrm{0}\:\Rightarrow{F}\left({u}\right)\:=\frac{\beta}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{d}}{{au}^{\mathrm{2}} \:+{b}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{0}=\beta\:\:+\frac{{d}}{{b}}\:\Rightarrow{b}\beta\:+{d}\:=\mathrm{0} \\ $$$${lim}_{{u}\rightarrow\mathrm{0}} \:\:\:{u}^{\mathrm{2}} {F}\left({u}\right)\:=\frac{\mathrm{2}}{{a}}\:=\:\beta\:+\frac{{d}}{{a}}\:\Rightarrow\mathrm{2}\:=\beta{a}\:+{d}\:\Rightarrow{d}=\mathrm{2}−\beta{a}\:\Rightarrow \\ $$$${b}\beta\:+\mathrm{2}−\beta{a}\:=\mathrm{0}\:\Rightarrow\left({b}−{a}\right)\beta\:=−\mathrm{2}\:\Rightarrow\beta\:=\frac{\mathrm{2}}{{a}−{b}} \\ $$$${d}\:=−{b}\beta\:=\frac{−\mathrm{2}{b}}{{a}−{b}}\:\Rightarrow{F}\left({u}\right)\:=\frac{\mathrm{2}}{\left({a}−{b}\right)\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)}\:−\frac{\mathrm{2}{b}}{\left({a}−{b}\right)\left({au}^{\mathrm{2}} \:+{b}\right)}\:\Rightarrow \\ $$$$\int\:{F}\left({u}\right){du}\:=\frac{\mathrm{2}}{{a}−{b}}\:\int\:\:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:−\frac{\mathrm{2}{b}}{\left({a}−{b}\right)}\:\int\:\:\frac{{du}}{{au}^{\mathrm{2}} \:+{b}} \\ $$$$\int\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{1}}\:={arctan}\left({u}\right)\:+{c}_{\mathrm{0}} \\ $$$$\int\:\:\:\frac{{du}}{{au}^{\mathrm{2}} \:+{b}}\:=\frac{\mathrm{1}}{{a}}\:\int\:\:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\frac{{b}}{{a}}}\:=_{{u}=\sqrt{\frac{{b}}{{a}}}{u}} \:\:\:\frac{\mathrm{1}}{{a}}\:\int\:\:\frac{{du}}{\frac{{b}}{{a}}\left(\mathrm{1}\:+{u}^{\mathrm{2}} \right)}\:\sqrt{\frac{{b}}{{a}}}{du} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{ab}}}\:{arctan}\left({u}\right)\:+{c}_{\mathrm{1}} \:\Rightarrow \\ $$$${A}\:=\frac{\mathrm{2}}{{a}−{b}}\:{arctan}\left({tanx}\right)\:+\frac{\mathrm{1}}{\:\sqrt{{ab}}}\:{actan}\left({tanx}\right)\:+{c} \\ $$$$=\frac{\mathrm{2}{x}}{{a}−{b}}\:+\frac{{x}}{\:\sqrt{{ab}}}\:=\frac{\mathrm{2}{x}}{−\mathrm{2}\sqrt{\mathrm{3}}}\:+\frac{{x}}{.\sqrt{\mathrm{5}}}\:=\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right){x} \\ $$$$ \\ $$
Answered by tanmay last updated on 20/Apr/19
$$\left.{c}\right)\int\frac{{cosx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int{secxdx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({secx}+{tanx}\right)+{c} \\ $$
Answered by tanmay last updated on 20/Apr/19
$$\left.{b}\right){x}={t}^{\mathrm{6}} \:\rightarrow{dx}=\mathrm{6}{t}^{\mathrm{5}} {dt} \\ $$$$\int\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{3}} +{t}^{\mathrm{2}} +{t}}×\mathrm{6}{t}^{\mathrm{5}} {dt} \\ $$$$\mathrm{6}\int\frac{{t}^{\mathrm{7}} +{t}^{\mathrm{5}} }{{t}^{\mathrm{3}} +{t}^{\mathrm{2}} +{t}+\mathrm{1}}{dt} \\ $$$$=\mathrm{6}\int\frac{{t}^{\mathrm{7}} +{t}^{\mathrm{6}} +{t}^{\mathrm{5}} +{t}^{\mathrm{4}} −{t}^{\mathrm{6}} −{t}^{\mathrm{4}} }{{t}^{\mathrm{3}} +{t}^{\mathrm{2}} +{t}+\mathrm{1}}{dt} \\ $$$$=\mathrm{6}\int{t}^{\mathrm{4}} −\mathrm{6}\int\frac{{t}^{\mathrm{6}} +{t}^{\mathrm{4}} }{{t}^{\mathrm{2}} \left({t}+\mathrm{1}\right)+\mathrm{1}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{dt} \\ $$$$\mathrm{6}\int{t}^{\mathrm{4}} −\mathrm{6}\int\frac{{t}^{\mathrm{4}} \left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}+\mathrm{1}\right)}{dt} \\ $$$$=\mathrm{6}\int{t}^{\mathrm{4}} −\mathrm{6}\int\frac{{t}^{\mathrm{4}} −\mathrm{1}+\mathrm{1}}{{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{6}\int{t}^{\mathrm{4}} −\mathrm{6}\int\frac{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)+\mathrm{1}}{{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{6}\int{t}^{\mathrm{4}} −\mathrm{6}\int\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}−\mathrm{1}\right){dt}−\mathrm{6}\int\frac{{dt}}{{t}+\mathrm{1}} \\ $$$$\mathrm{6}\int{t}^{\mathrm{4}} −\mathrm{6}\int{t}^{\mathrm{3}} −{t}^{\mathrm{2}} +{t}−\mathrm{1}{dt}−\mathrm{6}\int\frac{{dt}}{{t}+\mathrm{1}} \\ $$$$=\frac{\mathrm{6}{t}^{\mathrm{5}} }{\mathrm{5}}−\frac{\mathrm{6}{t}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mathrm{6}{t}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{6}{t}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{6}{t}−\mathrm{6}{ln}\left({t}+\mathrm{1}\right)+{c} \\ $$$$=\frac{\mathrm{6}}{\mathrm{5}}\left({x}\right)^{\frac{\mathrm{5}}{\mathrm{6}}} −\frac{\mathrm{3}}{\mathrm{2}}\left({x}\right)^{\frac{\mathrm{4}}{\mathrm{6}}} +\mathrm{2}\left({x}\right)^{\frac{\mathrm{3}}{\mathrm{6}}} −\mathrm{3}\left({x}\right)^{\frac{\mathrm{2}}{\mathrm{6}}} +\mathrm{6}\left({x}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} −\mathrm{6}{ln}\left({x}^{\frac{\mathrm{1}}{\mathrm{6}}} +\mathrm{1}\right)+{c} \\ $$
Answered by tanmay last updated on 20/Apr/19
$$\left.{a}\right)\int\frac{{dx}}{\mathrm{1}−{cos}\mathrm{2}{x}+\mathrm{3}{tan}^{\mathrm{2}} {x}} \\ $$$${t}={tanx}\rightarrow{dt}={sec}^{\mathrm{2}} {xdx} \\ $$$${dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\int\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}{t}^{\mathrm{2}} \right)} \\ $$$$\int\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{1}+{t}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{4}} } \\ $$$$\int\frac{{dt}}{\mathrm{3}{t}^{\mathrm{4}} +\mathrm{5}{t}^{\mathrm{2}} } \\ $$$$\int\frac{{dt}}{{t}^{\mathrm{2}} \left(\mathrm{3}{t}^{\mathrm{2}} +\mathrm{5}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}\int\frac{\mathrm{3}{t}^{\mathrm{2}} +\mathrm{5}−\mathrm{3}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} \left(\mathrm{3}{t}^{\mathrm{2}} +\mathrm{5}\right)}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}\int\frac{{dt}}{{t}^{\mathrm{2}} }−\frac{\mathrm{3}}{\mathrm{5}}\int\frac{{dt}}{\mathrm{3}\left({t}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{3}\:}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}×\frac{{t}^{−\mathrm{2}+\mathrm{1}} }{−\mathrm{2}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{5}}×\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}}×{tan}^{−\mathrm{1}} \left(\frac{{t}}{\:\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}}\right)+{c} \\ $$$$\frac{−\mathrm{1}}{\mathrm{5}{t}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{5}\sqrt{\mathrm{5}}}{tan}^{−\mathrm{1}} \left(\frac{{t}}{\:\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}}\right)+{c} \\ $$$$\frac{−\mathrm{1}}{\mathrm{5}{tanx}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{5}\sqrt{\mathrm{5}}}{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}}\right)+{c} \\ $$
Answered by tanmay last updated on 20/Apr/19
$$\left.\mathrm{4}\right)\int\frac{{sin}^{\mathrm{2}} {x}}{{a}+{bcos}^{\mathrm{2}} {x}}{dx} \\ $$$$\int\frac{\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}}}{{a}+{b}\left(\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}\right)}{dx} \\ $$$$\int\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}{a}+{b}+{bcos}\mathrm{2}{x}}{dx} \\ $$$$\frac{\mathrm{1}}{{b}}\int\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\left(\frac{\mathrm{2}{a}+{b}}{{b}}\right)+{cos}\mathrm{2}{x}}{dx} \\ $$$$\frac{\mathrm{1}}{{b}}\int\frac{\mathrm{1}+\left(\frac{\mathrm{2}{a}+{b}}{{b}}\right)−\left(\frac{\mathrm{2}{a}+{b}}{{b}}\right)−{cos}\mathrm{2}{x}}{\left(\frac{\mathrm{2}{a}+{b}}{{b}}\right)+{cos}\mathrm{2}{x}}{dx} \\ $$$${let}\:{k}=\frac{\mathrm{2}{a}+{b}}{{b}} \\ $$$$\frac{\mathrm{1}}{{b}\:}\int\frac{\mathrm{1}+{k}}{{k}+{cos}\mathrm{2}{x}}{dx}−\frac{\mathrm{1}}{{b}}\int{dx} \\ $$$$\frac{\mathrm{1}+{k}}{{b}}\int\frac{{dx}}{{k}+\frac{\mathrm{1}−{tan}^{\mathrm{2}} {x}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}}}−\frac{\mathrm{1}}{{b}}\int{dx} \\ $$$$\frac{\mathrm{1}+{k}}{{b}}\int\frac{{sec}^{\mathrm{2}} {xdx}}{\left({k}+\mathrm{1}\right)+\left({k}−\mathrm{1}\right){tan}^{\mathrm{2}} {x}}−\frac{\mathrm{1}}{{b}}\int{dx} \\ $$$$\frac{\mathrm{1}+{k}}{{b}}×\frac{\mathrm{1}}{{k}−\mathrm{1}}\int\frac{{d}\left({tanx}\right)}{\left(\sqrt{\frac{{k}+\mathrm{1}}{{k}−\mathrm{1}}}\:\right)^{\mathrm{2}} +{tan}^{\mathrm{2}} {x}}−\frac{\mathrm{1}}{{b}}\int{dx} \\ $$$$\frac{\mathrm{1}}{{b}}×\frac{{k}+\mathrm{1}}{{k}−\mathrm{1}}×\frac{\mathrm{1}}{\:\sqrt{\frac{{k}+\mathrm{1}}{{k}−\mathrm{1}}}}{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\frac{{k}+\mathrm{1}}{{k}−\mathrm{1}}}}\right)−\frac{\mathrm{1}}{{b}}{x}+{c} \\ $$$${now}\:{a}=\sqrt{\mathrm{2}}\:\:\:\:{b}=\sqrt{\mathrm{3}}\:\:\:{k}=\frac{\mathrm{2}{a}+{b}}{{b}}\rightarrow{k}=\frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}×\sqrt{\frac{\frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}\:}}{\:\sqrt{\mathrm{3}}\:}+\mathrm{1}}{\frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}}}\:\:×{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\frac{\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:}{\:\sqrt{\mathrm{2}}}}}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{x}+{c} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}×\sqrt{\frac{\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:}{\:\sqrt{\mathrm{2}}}}\:×{tan}^{−\mathrm{1}} \left(\frac{{tanx}}{\:\sqrt{\frac{\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\:}{\:\sqrt{\mathrm{2}}}}}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{x}+{c} \\ $$$$ \\ $$
Commented by behi83417@gmail.com last updated on 20/Apr/19
$${sir}\:{tanmay}!{thank}\:{you}\:{very}\:{much}\:{for} \\ $$$${so}\:{hard}\:{work}.{nice}\:{and}\:{smart}. \\ $$
Commented by peter frank last updated on 20/Apr/19
$${nice}\:{work}.{thanks} \\ $$
Commented by tanmay last updated on 21/Apr/19
$${thank}\:{you}\:{sir} \\ $$