Menu Close

a-Evaluate-the-integral-of-the-function-y-x-3x-1-2x-2-2x-3-b-Find-the-constant-A-B-C-in-the-identity-3x-2-ax-x-2a-x-2-a-2-




Question Number 18066 by tawa tawa last updated on 14/Jul/17
(a)  Evaluate the integral of the function:  y(x) = ((3x + 1)/(2x^2  − 2x + 3))  (b)   Find the constant A, B, C in the identity:                               ((3x^2  − ax)/((x − 2a)(x^2  + a^2 ))) ≡ (A/((x − 2a))) + ((Bx + Ca)/((x^2  + a^2 )))  where  a  is a constant,  hence prove that.                                               ∫_0 ^( 2)   ((3x^2  − ax)/((x − 2a)(x^2  + a^2 ))) dx = (π/4) − (3/2) ln(2)
$$\left(\mathrm{a}\right)\:\:\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}:\:\:\mathrm{y}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3x}\:+\:\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} \:−\:\mathrm{2x}\:+\:\mathrm{3}} \\ $$$$\left(\mathrm{b}\right)\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\mathrm{in}\:\mathrm{the}\:\mathrm{identity}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{3x}^{\mathrm{2}} \:−\:\mathrm{ax}}{\left(\mathrm{x}\:−\:\mathrm{2a}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{a}^{\mathrm{2}} \right)}\:\equiv\:\frac{\mathrm{A}}{\left(\mathrm{x}\:−\:\mathrm{2a}\right)}\:+\:\frac{\mathrm{Bx}\:+\:\mathrm{Ca}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{a}^{\mathrm{2}} \right)} \\ $$$$\mathrm{where}\:\:\mathrm{a}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant},\:\:\mathrm{hence}\:\mathrm{prove}\:\mathrm{that}.\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\:\frac{\mathrm{3x}^{\mathrm{2}} \:−\:\mathrm{ax}}{\left(\mathrm{x}\:−\:\mathrm{2a}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{a}^{\mathrm{2}} \right)}\:\mathrm{dx}\:=\:\frac{\pi}{\mathrm{4}}\:−\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$
Commented by tawa tawa last updated on 15/Jul/17
please help.
$$\mathrm{please}\:\mathrm{help}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *