Menu Close

a-Find-a-four-digit-number-that-satisfies-the-following-condition-the-sum-of-the-squares-of-the-extreme-digits-is-equal-to-13-the-sum-of-the-squares-of-the-middle-digits-is-equal-to-85-if-we-substrac




Question Number 114326 by 1549442205PVT last updated on 18/Sep/20
a)Find a four−digit number that  satisfies the following condition:  the sum of the squares of the extreme digits  is equal to 13;the sum of the squares of  the middle digits is equal to 85;if we  substract 1089 from the desired  number we obtain a number containing  the same digits as the desired number  but in reverse order.  b)Prove that if the sum k+m+n of   three natural numbers is divisible by   6 then k^3 +m^3 +n^3  is also  divisible by6
a)Findafourdigitnumberthatsatisfiesthefollowingcondition:thesumofthesquaresoftheextremedigitsisequalto13;thesumofthesquaresofthemiddledigitsisequalto85;ifwesubstract1089fromthedesirednumberweobtainanumbercontainingthesamedigitsasthedesirednumberbutinreverseorder.b)Provethatifthesumk+m+nofthreenaturalnumbersisdivisibleby6thenk3+m3+n3isalsodivisibleby6
Commented by Rasheed.Sindhi last updated on 18/Sep/20
Counter example  6 ∣ (1+2+3) but 6 ∤ (1^2 +2^2 +3^2 )
Counterexample6(1+2+3)but6(12+22+32)
Commented by 1549442205PVT last updated on 18/Sep/20
Thank Sir.Exuse me,typo.I corrected
ThankSir.Exuseme,typo.Icorrected
Answered by mr W last updated on 18/Sep/20
[abcd]  a^2 +d^2 =13 ⇒(a,d)=(2,3) or (3,2)  b^2 +c^2 =85 ⇒(b,c)=(9,2) or (2,9) or (6,7) or (7,6)  [abcd]−1089=[dcba]  ⇒a>d ⇒a=3, d=2  [3bc2]−1089=[2cb3]  3000+100b+10c+2−1089=2000+100c+10b+3  ⇒b=c+1 ⇒b=7, c=6  ⇒the number is 3762.
[abcd]a2+d2=13(a,d)=(2,3)or(3,2)b2+c2=85(b,c)=(9,2)or(2,9)or(6,7)or(7,6)[abcd]1089=[dcba]a>da=3,d=2[3bc2]1089=[2cb3]3000+100b+10c+21089=2000+100c+10b+3b=c+1b=7,c=6thenumberis3762.
Commented by Rasheed.Sindhi last updated on 18/Sep/20
You′re faster sir!
Yourefastersir!
Commented by mr W last updated on 18/Sep/20
sorry sir! i give too less explanation.
sorrysir!igivetoolessexplanation.
Commented by mr W last updated on 18/Sep/20
can you comfirm Q113710 sir?
canyoucomfirmQ113710sir?
Commented by Rasheed.Sindhi last updated on 18/Sep/20
Sorry sir I can′t.
SorrysirIcant.
Commented by Rasheed.Sindhi last updated on 18/Sep/20
I think your answer is more  algebraic-based.Whereas my  answer somewhat more depends on  trial.So I like yours!
Ithinkyouranswerismorealgebraicbased.Whereasmyanswersomewhatmoredependsontrial.SoIlikeyours!
Commented by mr W last updated on 18/Sep/20
thanks sir!
thankssir!
Answered by Rasheed.Sindhi last updated on 18/Sep/20
Reauired number: abcd  a^2 +d^2 =13.......(i)  b^2 +c^2 =85.........(ii)  abcd−1089=dcba.....(iii)  dcba<abcd⇒d<a  a^2 +d^2 =13 ∧ d<a⇒a^2 =9∧d^2 =4  ⇒a=3 ∧ d=2  The number is now 3bc2  b^2 +c^2 =85  85 is the sum of 81 and 4 (square  or 36 and 49 ((square numbers)  So {b,c}={2,9} or {6,7}  The number may be  3922 or 3292 or 3672 or 3762  Applying condition(iii)  The number is 3762
Reauirednumber:abcda2+d2=13.(i)b2+c2=85(ii)abcd1089=dcba..(iii)dcba<abcdd<aa2+d2=13d<aa2=9d2=4a=3d=2Thenumberisnow3bc2b2+c2=8585isthesumof81and4(squareor36and49((squarenumbers)So{b,c}={2,9}or{6,7}Thenumbermaybe3922or3292or3672or3762Applyingcondition(iii)Thenumberis3762
Answered by MJS_new last updated on 18/Sep/20
6∣(k+m+n)  k+m+n=6x  k=6x−m−n  k^3 +m^3 +n^3 =  =18x(12x^2 −6(m+n)x+(m+n)^2 )−3mn(m+n)  6∣(18x(12x^2 −6(m+n)x+(m+n)^2 ))  we need to show 6∣(3mn(m+n))  ⇔ 2∣mn(m+n)  easy to see this is true if 2∣m ∨ 2∣n  and if both m, n are uneven 2∣(m+n)  ⇒ proved
6(k+m+n)k+m+n=6xk=6xmnk3+m3+n3==18x(12x26(m+n)x+(m+n)2)3mn(m+n)6(18x(12x26(m+n)x+(m+n)2))weneedtoshow6(3mn(m+n))2mn(m+n)easytoseethisistrueif2m2nandifbothm,nareuneven2(m+n)proved
Answered by 1549442205PVT last updated on 20/Sep/20
Thank all Sirs  a)Denote the number we need find by  mnpq^(−) .From the hypothesis we have  m^2 +q^2 =13=3^2 +2^2 ⇒mq^(−) ∈{32,23}  n^2 +q^2 =85=9^2 +2^2 =7^2 +6^2 ⇒np^(−) ∈{92,29,76,67}  From the condition mnpq^(−) −1089=qpnm^(−)   ⇔mnpq^(−) −qpnm^(−) =1089⇒m=3,q=2  we hav mnpq^(−) ∈{3922,3292,3762,3672}  Hence,3np2^(−) −2pn3^(−) =1089.This gives  us np^(−) =76⇒mnpq^(−) =3762  b)Applying the identity  a^3 +b^3 +c^3 −3abc=(a+b+c)(a^2 +b^2 +c^2 −ab−bc−ca)  we have:  k^3 +m^3 +n^3 =3mnk+(k+m+n)(k^2 +m^2   +n^2 −km−kn−mn)  From the hypothesis m+n+k⋮6  ⇒m+n+k=6p(p∈Z)⇒among three  numbers m,n,k at least one number  is even (since  if all three numbers  are odd then m+n+k is odd then  m+n+k isn′t divisible by 2,so isn′t  divisible by 6)  ⇒3mnk⋮6,but m+n+k⋮6  ⇒m^3 +n^3 +k^3 ⋮6(Q.E.D)
ThankallSirsa)Denotethenumberweneedfindbymnpq.Fromthehypothesiswehavem2+q2=13=32+22mq{32,23}n2+q2=85=92+22=72+62np{92,29,76,67}Fromtheconditionmnpq1089=qpnmmnpqqpnm=1089m=3,q=2wehavmnpq{3922,3292,3762,3672}Hence,3np22pn3=1089.Thisgivesusnp=76mnpq=3762b)Applyingtheidentitya3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca)wehave:k3+m3+n3=3mnk+(k+m+n)(k2+m2+n2kmknmn)Fromthehypothesism+n+k6m+n+k=6p(pZ)amongthreenumbersm,n,katleastonenumberiseven(sinceifallthreenumbersareoddthenm+n+kisoddthenm+n+kisntdivisibleby2,soisntdivisibleby6)3mnk6,butm+n+k6m3+n3+k36(Q.E.D)

Leave a Reply

Your email address will not be published. Required fields are marked *