Menu Close

A-flywheel-whose-diameter-is-1-5m-decrease-uniformly-from-240rad-min-until-it-came-to-rest-10s-Find-the-number-of-revolution-made-




Question Number 22059 by tawa tawa last updated on 10/Oct/17
A flywheel whose diameter is 1.5m decrease uniformly from 240rad/min  until it came to rest 10s. Find the number of revolution made.
$$\mathrm{A}\:\mathrm{flywheel}\:\mathrm{whose}\:\mathrm{diameter}\:\mathrm{is}\:\mathrm{1}.\mathrm{5m}\:\mathrm{decrease}\:\mathrm{uniformly}\:\mathrm{from}\:\mathrm{240rad}/\mathrm{min} \\ $$$$\mathrm{until}\:\mathrm{it}\:\mathrm{came}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{10s}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{revolution}\:\mathrm{made}. \\ $$
Answered by Tinkutara last updated on 10/Oct/17
r=(3/4)m; ω_1 =2π(4rps)=8π rad/s  0=ω_1 −αt  α=(ω_1 /t)=((4π)/5) rad/s^2   θ=ω_1 t−(α/2)t^2   θ=80π−((2π)/5)×100=40π  Number of revolutions=(θ/(2π))=20
$${r}=\frac{\mathrm{3}}{\mathrm{4}}{m};\:\omega_{\mathrm{1}} =\mathrm{2}\pi\left(\mathrm{4}{rps}\right)=\mathrm{8}\pi\:{rad}/{s} \\ $$$$\mathrm{0}=\omega_{\mathrm{1}} −\alpha{t} \\ $$$$\alpha=\frac{\omega_{\mathrm{1}} }{{t}}=\frac{\mathrm{4}\pi}{\mathrm{5}}\:{rad}/{s}^{\mathrm{2}} \\ $$$$\theta=\omega_{\mathrm{1}} {t}−\frac{\alpha}{\mathrm{2}}{t}^{\mathrm{2}} \\ $$$$\theta=\mathrm{80}\pi−\frac{\mathrm{2}\pi}{\mathrm{5}}×\mathrm{100}=\mathrm{40}\pi \\ $$$${Number}\:{of}\:{revolutions}=\frac{\theta}{\mathrm{2}\pi}=\mathrm{20} \\ $$
Commented by tawa tawa last updated on 10/Oct/17
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *