Menu Close

A-function-f-is-define-by-f-3-2sinx-for-0-x-360-find-the-range-of-f-




Question Number 23785 by tawa tawa last updated on 06/Nov/17
A function f is define by  f : → 3 − 2sinx,  for  0 ≤ x ≤ 360  find the range of  f
Afunctionfisdefinebyf:32sinx,for0x360findtherangeoff
Answered by mrW1 last updated on 06/Nov/17
sin x∈[−1,+1]  f=3−2sin x ∈[1,5]
sinx[1,+1]f=32sinx[1,5]
Commented by tawa tawa last updated on 06/Nov/17
How please, explain more.
Howplease,explainmore.
Commented by Joel577 last updated on 06/Nov/17
The range of function sin x is [−1,1]  Hence the minimum value of f(x) = 3 − 2sin x  is 1 and the max is 5
Therangeoffunctionsinxis[1,1]Hencetheminimumvalueoff(x)=32sinxis1andthemaxis5
Commented by tawa tawa last updated on 06/Nov/17
God bless you sir. But i have not really understand.
Godblessyousir.Butihavenotreallyunderstand.
Commented by mrW1 last updated on 06/Nov/17
f(x)=3−2sin x is minimum if sin x=1,  and the minimum is 3−2=1.    f(x)=3−2sin x is maximum if sin x=−1,  and the maximum is 3+2=5.    ⇒1≤f(x)≤5
f(x)=32sinxisminimumifsinx=1,andtheminimumis32=1.f(x)=32sinxismaximumifsinx=1,andthemaximumis3+2=5.1f(x)5
Commented by tawa tawa last updated on 06/Nov/17
Wow, now i understand. God bless you sir.
Wow,nowiunderstand.Godblessyousir.
Answered by FilupES last updated on 09/Nov/17
f(x)=3−2sin(x),     0≤x≤360  −1≤sin(x)≤1,    ∀x     g=2sin(x)  min(g)=−2  max(g)=2     f(x)=3−g  min(f)=3−max(g)=1  max(f)=3−min(g)=5     ∴ 1≤f(x)≤5
f(x)=32sin(x),0x3601sin(x)1,xg=2sin(x)min(g)=2max(g)=2f(x)=3gmin(f)=3max(g)=1max(f)=3min(g)=51f(x)5
Commented by tawa tawa last updated on 11/Nov/17
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *