Menu Close

a-function-f-is-defined-on-the-positive-integers-satisfies-f-1-1002-amp-f-1-f-2-f-3-f-n-n-2-f-n-find-f-2003-




Question Number 90259 by john santu last updated on 22/Apr/20
a function f is defined on   the positive integers satisfies   f(1) = 1002 , & f(1)+f(2)+f(3)+  ... +f(n) = n^2  f(n) .  find f(2003)
afunctionfisdefinedonthepositiveintegerssatisfiesf(1)=1002,&f(1)+f(2)+f(3)++f(n)=n2f(n).findf(2003)
Answered by mr W last updated on 22/Apr/20
Σ_(k=1) ^n f(k)=n^2 f(n)   ...(i)  Σ_(k=1) ^(n+1) f(k)=(n+1)^2 f(n+1)  Σ_(k=1) ^n f(k)+f(n+1)=(n+1)^2 f(n+1)   ...(ii)  (ii)−(i):  f(n+1)=(n+1)^2 f(n+1)−n^2 f(n)  ⇒f(n+1)=(n/(n+2))f(n)  ⇒f(n)=((n−1)/(n+1))f(n−1)  =(((n−1)(n−2)...2×1)/((n+1)n(n−1)...4×3))f(1)  ⇒f(n)=(2/((n+1)n))f(1)  f(2003)=(2/(2004×2003))×1002=(1/(2003))
nk=1f(k)=n2f(n)(i)n+1k=1f(k)=(n+1)2f(n+1)nk=1f(k)+f(n+1)=(n+1)2f(n+1)(ii)(ii)(i):f(n+1)=(n+1)2f(n+1)n2f(n)f(n+1)=nn+2f(n)f(n)=n1n+1f(n1)=(n1)(n2)2×1(n+1)n(n1)4×3f(1)f(n)=2(n+1)nf(1)f(2003)=22004×2003×1002=12003
Commented by john santu last updated on 22/Apr/20
the relation you obtained between   f(n) and f(n−1) is correct.  by the way, in the step before  with f(n+1) you wrote f(n−1)  instead of f(n). the relation   you obtained f(n) and f(1) is  incorrect . it should be a 2 and  not 6. the quotient of product   doesn′t seem right. so i′m   assuming the error came   from there.
therelationyouobtainedbetweenf(n)andf(n1)iscorrect.bytheway,inthestepbeforewithf(n+1)youwrotef(n1)insteadoff(n).therelationyouobtainedf(n)andf(1)isincorrect.itshouldbea2andnot6.thequotientofproductdoesntseemright.soimassumingtheerrorcamefromthere.
Commented by john santu last updated on 22/Apr/20
the answer is (1/(2003))
theansweris12003
Commented by mr W last updated on 22/Apr/20
now fixed. thanks!
nowfixed.thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *