Menu Close

A-grasshopper-can-jump-a-maximum-horizontal-distance-of-40-cm-If-it-spends-negligible-time-on-the-ground-then-in-this-case-its-speed-along-the-horizontal-road-will-be-




Question Number 15418 by Tinkutara last updated on 10/Jun/17
A grasshopper can jump a maximum  horizontal distance of 40 cm. If it  spends negligible time on the ground  then in this case its speed along the  horizontal road will be?
Agrasshoppercanjumpamaximumhorizontaldistanceof40cm.Ifitspendsnegligibletimeonthegroundtheninthiscaseitsspeedalongthehorizontalroadwillbe?
Answered by mrW1 last updated on 10/Jun/17
let  w=velocity of grasshopper at start  θ=angle at start  u=velocity horizontal  v=velocity vertical at start  g=10 m/s^2     u=wcos θ  v=wsin θ  y=vt−5t^2 =(v^2 /(100))−5(t^2 −2×(v/(10))t+(v^2 /(100)))=(v^2 /(100))−5(t−(v/(10)))^2   max. y at t=(v/(10))  time for a complete jump T=2×(v/(10))  x=uT  x=u×2×(v/(10))=wcos θ×2×((wsin θ)/(10))  =(w^2 /(10))×sin 2θ  max. x if sin 2θ=1 or θ=45°  max. x=(w^2 /(10))=d=40 cm  w=(√(10d))  u=wcos θ=(√(10d))×(1/( (√2)))=(√(5d)) (=(√((gd)/2)))  u=(√(5×0.4))=(√2) ≈ 1.4 m/s ≈ 5 km/h    ⇒the grasshopper has a speed of  about 5 km/h.
letw=velocityofgrasshopperatstartθ=angleatstartu=velocityhorizontalv=velocityverticalatstartg=10m/s2u=wcosθv=wsinθy=vt5t2=v21005(t22×v10t+v2100)=v21005(tv10)2max.yatt=v10timeforacompletejumpT=2×v10x=uTx=u×2×v10=wcosθ×2×wsinθ10=w210×sin2θmax.xifsin2θ=1orθ=45°max.x=w210=d=40cmw=10du=wcosθ=10d×12=5d(=gd2)u=5×0.4=21.4m/s5km/hthegrasshopperhasaspeedofabout5km/h.
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
ThanksSir!
Answered by ajfour last updated on 10/Jun/17
max horizontal range=(u^2 /g)  (u^2 /g)=(2/5)m, ⇒  u=2m/s   (with g=10m/s^2 )  θ=(π/4) for max. range  speed along horizontal is    ucos (π/4)=(2m/s)((1/( (√2))))=(√2)m/s .
maxhorizontalrange=u2gu2g=25m,u=2m/s(withg=10m/s2)θ=π4formax.rangespeedalonghorizontalisucosπ4=(2m/s)(12)=2m/s.
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *