Menu Close

a-gt-0-and-b-gt-0-if-1-1-ax-1-bx-n-a-n-x-n-find-the-sequence-a-n-




Question Number 29970 by abdo imad last updated on 14/Feb/18
a>0 and b>0  if   (1/((1−ax)(1−bx)))=Σ_n   a_n  x^n   find the sequence a_n .
$${a}>\mathrm{0}\:{and}\:{b}>\mathrm{0}\:\:{if}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{ax}\right)\left(\mathrm{1}−{bx}\right)}=\sum_{{n}} \:\:{a}_{{n}} \:{x}^{{n}} \\ $$$${find}\:{the}\:{sequence}\:{a}_{{n}} . \\ $$
Commented by abdo imad last updated on 16/Feb/18
for ∣x∣< inf((1/(∣a∣)),(1/(∣b∣))) we have  (1/((1−ax)(1−bx))) =(Σ_(n=0) ^∞  a^n x^n )(Σ_(m=0) ^∞  b^m  x^m )  =Σ_(k=0) ^∞   c_(k )  x^k   with  c_k = Σ_(i+j=k) u_i  v_j = Σ_(i+j=k)  a^i  b^j   =Σ_(i=0) ^k  a^i  b^(k−i) =((a^(k+1)  −b^(k+1) )/(a−b)) if a≠b and if a=b  c_k =Σ_(i=0) ^k  a^i =((1−a^(k+1) )/(1−a)) if a≠1 and c_k =(k+1) if a=1finally  if a≠b  a_n =((a^(n+1)  −b^(n+1) )/(a−b)) anf if a=b ≠1 a_n =((1−a^(n+1) )/(1−a))  if a=b=1   a_n =n+1 and we get the formula  (1/((1−x)^2 ))=Σ_(n=0) ^∞  (n+1)x^n .
$${for}\:\mid{x}\mid<\:{inf}\left(\frac{\mathrm{1}}{\mid{a}\mid},\frac{\mathrm{1}}{\mid{b}\mid}\right)\:{we}\:{have} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}−{ax}\right)\left(\mathrm{1}−{bx}\right)}\:=\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}^{{n}} {x}^{{n}} \right)\left(\sum_{{m}=\mathrm{0}} ^{\infty} \:{b}^{{m}} \:{x}^{{m}} \right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:\:{c}_{{k}\:} \:{x}^{{k}} \:\:{with}\:\:{c}_{{k}} =\:\sum_{{i}+{j}={k}} {u}_{{i}} \:{v}_{{j}} =\:\sum_{{i}+{j}={k}} \:{a}^{{i}} \:{b}^{{j}} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{k}} \:{a}^{{i}} \:{b}^{{k}−{i}} =\frac{{a}^{{k}+\mathrm{1}} \:−{b}^{{k}+\mathrm{1}} }{{a}−{b}}\:{if}\:{a}\neq{b}\:{and}\:{if}\:{a}={b} \\ $$$${c}_{{k}} =\sum_{{i}=\mathrm{0}} ^{{k}} \:{a}^{{i}} =\frac{\mathrm{1}−{a}^{{k}+\mathrm{1}} }{\mathrm{1}−{a}}\:{if}\:{a}\neq\mathrm{1}\:{and}\:{c}_{{k}} =\left({k}+\mathrm{1}\right)\:{if}\:{a}=\mathrm{1}{finally} \\ $$$${if}\:{a}\neq{b}\:\:{a}_{{n}} =\frac{{a}^{{n}+\mathrm{1}} \:−{b}^{{n}+\mathrm{1}} }{{a}−{b}}\:{anf}\:{if}\:{a}={b}\:\neq\mathrm{1}\:{a}_{{n}} =\frac{\mathrm{1}−{a}^{{n}+\mathrm{1}} }{\mathrm{1}−{a}} \\ $$$${if}\:{a}={b}=\mathrm{1}\:\:\:{a}_{{n}} ={n}+\mathrm{1}\:{and}\:{we}\:{get}\:{the}\:{formula} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{{n}} . \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *