Menu Close

a-gt-0-and-b-gt-0-if-1-1-ax-1-bx-n-a-n-x-n-find-the-sequence-a-n-




Question Number 29970 by abdo imad last updated on 14/Feb/18
a>0 and b>0  if   (1/((1−ax)(1−bx)))=Σ_n   a_n  x^n   find the sequence a_n .
a>0andb>0if1(1ax)(1bx)=nanxnfindthesequencean.
Commented by abdo imad last updated on 16/Feb/18
for ∣x∣< inf((1/(∣a∣)),(1/(∣b∣))) we have  (1/((1−ax)(1−bx))) =(Σ_(n=0) ^∞  a^n x^n )(Σ_(m=0) ^∞  b^m  x^m )  =Σ_(k=0) ^∞   c_(k )  x^k   with  c_k = Σ_(i+j=k) u_i  v_j = Σ_(i+j=k)  a^i  b^j   =Σ_(i=0) ^k  a^i  b^(k−i) =((a^(k+1)  −b^(k+1) )/(a−b)) if a≠b and if a=b  c_k =Σ_(i=0) ^k  a^i =((1−a^(k+1) )/(1−a)) if a≠1 and c_k =(k+1) if a=1finally  if a≠b  a_n =((a^(n+1)  −b^(n+1) )/(a−b)) anf if a=b ≠1 a_n =((1−a^(n+1) )/(1−a))  if a=b=1   a_n =n+1 and we get the formula  (1/((1−x)^2 ))=Σ_(n=0) ^∞  (n+1)x^n .
forx∣<inf(1a,1b)wehave1(1ax)(1bx)=(n=0anxn)(m=0bmxm)=k=0ckxkwithck=i+j=kuivj=i+j=kaibj=i=0kaibki=ak+1bk+1abifabandifa=bck=i=0kai=1ak+11aifa1andck=(k+1)ifa=1finallyifaban=an+1bn+1abanfifa=b1an=1an+11aifa=b=1an=n+1andwegettheformula1(1x)2=n=0(n+1)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *