Menu Close

a-gt-0-b-gt-0-What-is-the-minimum-value-of-b-2-2-a-b-a-2-ab-1-




Question Number 39971 by math2018 last updated on 14/Jul/18
a>0,b>0,  What is the minimum value of  ((b^2 +2)/(a+b))+(a^2 /(ab+1))   ?
a>0,b>0,Whatistheminimumvalueofb2+2a+b+a2ab+1?
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Jul/18
(b^2 /(a+b))+(a^2 /(ab+1))+(2/(a+b))=x(say)  using AM>GM  ((a+b)/2)>(√(ab))    ((b^2 /2)/((a+b)/2))+((a^2 /2)/((ab+1)/2))+((2/2)/((a+b)/2))<((b^2 /2)/( (√(ab))))+((a^2 /2)/( (√(ab))))+((2/2)/( (√(ab))))→y(say)  x<(b^2 /(2(√(ab))))+(a^2 /(2(√(ab))))+(2/(2(√(ab))))  x<((a^2 +b^2 +2)/(2(√(ab))))  x<((((a^2 +b^2 )/2)×2+2)/(2(√(ab))))  using  ((a^2 +b^2 )/2)>(√(a^2 b^2 ))    ((((a^2 +b^2 )/2)×2+2)/(2(√(ab))))>((2ab+2)/(2(√(ab))))→z(say)  y>((ab+1)/( (√(ab))))  y>((((ab+1)/2)×2)/( (√(ab))))→z    ((((ab+1)/2)×2)/( (√(ab))))>(((√(ab)) ×2)/( (√(ab))))  so z>2  given expression assumed to be x  x<y  y>z  z>2  i can not co relate between x and z
b2a+b+a2ab+1+2a+b=x(say)usingAM>GMa+b2>abb22a+b2+a22ab+12+22a+b2<b22ab+a22ab+22aby(say)x<b22ab+a22ab+22abx<a2+b2+22abx<a2+b22×2+22abusinga2+b22>a2b2a2+b22×2+22ab>2ab+22abz(say)y>ab+1aby>ab+12×2abzab+12×2ab>ab×2absoz>2givenexpressionassumedtobexx<yy>zz>2icannotcorelatebetweenxandz
Commented by math2018 last updated on 15/Jul/18
Thank you very much!
Thankyouverymuch!
Answered by ajfour last updated on 14/Jul/18
 f(a,b)=((b^2 +2)/(a+b))+(a^2 /(ab+1))   < ((b^2 +2)/(2(√(ab))))+(a^2 /(2(√(ab))))  = (((a−b)^2 +2ab+2)/(2(√(ab))))     =(((a−b)^2 )/(2(√(ab)))) +(√(ab))+(1/( (√(ab))))    the above expression has a  minimum of value equal to 2  for   a=b=1  hence   f_(min) (a,b) ≤ 2  .
f(a,b)=b2+2a+b+a2ab+1<b2+22ab+a22ab=(ab)2+2ab+22ab=(ab)22ab+ab+1abtheaboveexpressionhasaminimumofvalueequalto2fora=b=1hencefmin(a,b)2.
Commented by math2018 last updated on 15/Jul/18
Thank you Sir!
ThankyouSir!
Answered by math2018 last updated on 15/Jul/18
1° a+b≥ab+1  ((b^2 +2)/(a+b))+(a^2 /(ab+1))≥(((a^2 +1)+(b^2 +1))/(a+b))≥((2a+2b)/(a+b))=2;  2° a+b<ab+1  ((b^2 +2)/(a+b))+(a^2 /(ab+1))>((a^2 +b^2 +2)/(ab+1))≥((2ab+2)/(ab+1))=2  hence the minimum value is 2.
1°a+bab+1b2+2a+b+a2ab+1(a2+1)+(b2+1)a+b2a+2ba+b=2;2°a+b<ab+1b2+2a+b+a2ab+1>a2+b2+2ab+12ab+2ab+1=2hencetheminimumvalueis2.

Leave a Reply

Your email address will not be published. Required fields are marked *