Question Number 32039 by abdo imad last updated on 18/Mar/18
$${a}>−\mathrm{1}\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{a}\:{tan}^{\mathrm{2}} {t}}\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{atan}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{3}\right)\:\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+\mathrm{2}{tan}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}.\: \\ $$
Commented by abdo imad last updated on 22/Mar/18
$${let}\:{put}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{{dt}}{\mathrm{1}+{atan}^{\mathrm{2}} {t}} \\ $$$${f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{a}\frac{{sin}^{\mathrm{2}} {t}}{{cos}^{\mathrm{2}} {t}}}\:=\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{cos}^{\mathrm{2}} {t}}{{cos}^{\mathrm{2}} {t}\:+{asin}^{\mathrm{2}} {t}}{dt} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}}{\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right.}{\mathrm{2}}\:+{a}\frac{\mathrm{1}−{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}}{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)\:+{a}\left(\mathrm{1}−{cos}\left(\mathrm{2}{t}\right)\right)}\:{dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{a}\:+\left(\mathrm{1}−{a}\right){cos}\left(\mathrm{2}{t}\right)}\:\:{thech}.\:\mathrm{2}{t}\:={u}\:{give} \\ $$$${f}\left({a}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{\mathrm{1}+{cos}\left({u}\right)}{\mathrm{1}+{a}\:+\left(\mathrm{1}−{a}\right){cos}\left({u}\right)}{du}\:\:{ch}.\:{tan}\left(\frac{{u}}{\mathrm{2}}\right)={x}\:{give} \\ $$$${f}\left({a}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{1}+{a}\:+\left(\mathrm{1}−{a}\right)\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{2}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:+\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right.}{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{2}{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{1}+{a}\:+\left(\mathrm{1}+{a}\right){x}^{\mathrm{2}} \:+\left(\mathrm{1}−{a}\right)\:+\left({a}−\mathrm{1}\right){x}^{\mathrm{2}} \right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{2}{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{2}\:\:+\mathrm{2}{ax}^{\mathrm{2}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{ax}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{a}}\:\int_{\mathrm{0}} ^{\infty} \:\left(\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:−\:\:\frac{{a}}{\mathrm{1}+{ax}^{\mathrm{2}} }\right){dx} \\ $$$${f}\left({a}\right)\:=\:\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}\right)}\:−\:\frac{{a}}{\mathrm{1}−{a}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\mathrm{1}+{ax}^{\mathrm{2}\:} }\:{but}\:{we}\:{have} \\ $$$${by}\:{ch}.\:\sqrt{{a}}\:{x}\:=\:\alpha\:\:\left({we}\:{take}\:{a}>\mathrm{0}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{ax}^{\mathrm{2}} }\:=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\alpha^{\mathrm{2}} }\:\frac{{d}\alpha}{\:\sqrt{{a}}}\:\:=\frac{\pi}{\mathrm{2}\sqrt{{a}}}\:\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}\right)}\:−\frac{{a}}{\mathrm{1}−{a}}\:\frac{\pi}{\mathrm{2}\sqrt{{a}}} \\ $$$${f}\left({a}\right)\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}\right)}\left(\:\mathrm{1}−\:\sqrt{{a}}\:\right)\:\Rightarrow\:{f}\left({a}\right)=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}+\sqrt{{a}}\right)}\:. \\ $$
Commented by prof Abdo imad last updated on 22/Mar/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{proved}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{1}+{atan}^{\mathrm{2}} {t}}\:={f}\left({a}\right)\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}+\sqrt{{a}}\right)}\:{let}\:{derivate} \\ $$$${f}^{'} \left({a}\right)\:=\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{a}\:{tan}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{a}\:{tan}^{\mathrm{2}} {t}\right)^{\mathrm{2}} }{dt}\:=−{f}^{'} \left({a}\right)\:\:{but}\: \\ $$$${f}^{'} \left({a}\right)\:=\:−\frac{\pi}{\mathrm{2}}\left(\frac{\left.\mathrm{1}+\sqrt{{a}}\right)^{'} }{\left(\mathrm{1}+\sqrt{{a}}\right)^{\mathrm{2}} }\:\right)\:=−\frac{\pi}{\mathrm{2}}\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}}\left(\mathrm{1}+\sqrt{{a}}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{atan}^{\mathrm{2}} {t}\right)}{dt}\:=\:\:\frac{\pi}{\mathrm{4}\sqrt{{a}}\left(\mathrm{1}+\sqrt{{a}}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{a}=\mathrm{2}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+\mathrm{2}{tan}^{\mathrm{2}} {t}\right)}\:{dt}\:=\:\:\:\frac{\pi}{\left.\mathrm{4}\sqrt{\mathrm{2}\left(\right.}\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }\:. \\ $$
Commented by abdo imad last updated on 22/Mar/18
$${a}>\mathrm{0}. \\ $$