Menu Close

a-gt-1-calculate-0-pi-2-dt-1-a-tan-2-t-2-find-0-pi-2-tan-2-t-1-atan-2-t-2-dt-3-find-the-value-of-0-pi-2-tan-2-t-1-2tan-2-t-2-dt-




Question Number 32039 by abdo imad last updated on 18/Mar/18
a>−1  calculate  ∫_0 ^(π/2)      (dt/(1+a tan^2 t)) .  2) find ∫_0 ^(π/2)    ((tan^2 t)/((1+atan^2 t)^2 )) dt  3)  find the value of  ∫_0 ^(π/2)     ((tan^2 t)/((1+2tan^2 t)^2 ))dt.
a>1calculate0π2dt1+atan2t.2)find0π2tan2t(1+atan2t)2dt3)findthevalueof0π2tan2t(1+2tan2t)2dt.
Commented by abdo imad last updated on 22/Mar/18
let put f(a) = ∫_0 ^(π/2)     (dt/(1+atan^2 t))  f(a) = ∫_0 ^(π/2)      (dt/(1+a((sin^2 t)/(cos^2 t)))) =  ∫_0 ^(π/2)       ((cos^2 t)/(cos^2 t +asin^2 t))dt  f(a)= ∫_0 ^(π/2)      (((1+cos(2t))/2)/(((1+cos(2t)/2) +a((1−cos(2t))/2)))dt  = ∫_0 ^(π/2)     ((1+cos(2t))/(1+cos(2t) +a(1−cos(2t)))) dt  = ∫_0 ^(π/2)    ((1+cos(2t))/(1+a +(1−a)cos(2t)))  thech. 2t =u give  f(a) = (1/2)∫_0 ^π     ((1+cos(u))/(1+a +(1−a)cos(u)))du  ch. tan((u/2))=x give  f(a) =(1/2) ∫_0 ^∞   ((1+((1−x^2 )/(1+x^2 )))/(1+a +(1−a)((1−x^2 )/(1+x^2 ))))  ((2dx)/(1+x^2 ))  f(a) = ∫_0 ^∞         (2/((1+x^2 )((1+a)(1+x^2 ) +(1−a)(1−x^2 )))dx  = ∫_0 ^∞       ((2dx)/((1+x^2 )( 1+a +(1+a)x^2  +(1−a) +(a−1)x^2 )))  = ∫_0 ^∞         ((2dx)/((1+x^2 )( 2  +2ax^2 ))) =∫_0 ^∞       (dx/((1+x^2 )(1+ax^2 )))  =(1/(1−a)) ∫_0 ^∞  ( (1/(1+x^2 )) −  (a/(1+ax^2 )))dx  f(a) =  (π/(2(1−a))) − (a/(1−a)) ∫_0 ^∞     (dx/(1+ax^(2 ) )) but we have  by ch. (√a) x = α  (we take a>0)  ∫_0 ^∞    (dx/(1+ax^2 )) =  ∫_0 ^∞     (1/(1+α^2 )) (dα/( (√a)))  =(π/(2(√a)))  ⇒  f(a) = (π/(2(1−a))) −(a/(1−a)) (π/(2(√a)))  f(a) = (π/(2(1−a)))( 1− (√a) ) ⇒ f(a)= (π/(2(1+(√a)))) .
letputf(a)=0π2dt1+atan2tf(a)=0π2dt1+asin2tcos2t=0π2cos2tcos2t+asin2tdtf(a)=0π21+cos(2t)21+cos(2t2+a1cos(2t)2dt=0π21+cos(2t)1+cos(2t)+a(1cos(2t))dt=0π21+cos(2t)1+a+(1a)cos(2t)thech.2t=ugivef(a)=120π1+cos(u)1+a+(1a)cos(u)duch.tan(u2)=xgivef(a)=1201+1x21+x21+a+(1a)1x21+x22dx1+x2f(a)=02(1+x2)((1+a)(1+x2)+(1a)(1x2)dx=02dx(1+x2)(1+a+(1+a)x2+(1a)+(a1)x2)=02dx(1+x2)(2+2ax2)=0dx(1+x2)(1+ax2)=11a0(11+x2a1+ax2)dxf(a)=π2(1a)a1a0dx1+ax2butwehavebych.ax=α(wetakea>0)0dx1+ax2=011+α2dαa=π2af(a)=π2(1a)a1aπ2af(a)=π2(1a)(1a)f(a)=π2(1+a).
Commented by prof Abdo imad last updated on 22/Mar/18
2) we have proved that   ∫_0 ^(π/2)    (dt/(1+atan^2 t)) =f(a) = (π/(2(1+(√a)))) let derivate  f^′ (a) = −∫_0 ^(π/2)    ((tan^2 t)/((1+a tan^2 t)^2 ))dt ⇒  ∫_0 ^(π/2)    ((tan^2 t)/((1+a tan^2 t)^2 ))dt =−f^′ (a)  but   f^′ (a) = −(π/2)(((1+(√a))^′ )/((1+(√a))^2 )) ) =−(π/2)  (1/(2(√a)(1+(√a))^2 )) ⇒  ∫_0 ^(π/2)    ((tan^2 t)/((1+atan^2 t)))dt =  (π/(4(√a)(1+(√a))^2 ))  3) a=2 ⇒  ∫_0 ^(π/2)    ((tan^2 t)/((1+2tan^2 t))) dt =   (π/(4(√(2())1+(√2))^2 )) .
2)wehaveprovedthat0π2dt1+atan2t=f(a)=π2(1+a)letderivatef(a)=0π2tan2t(1+atan2t)2dt0π2tan2t(1+atan2t)2dt=f(a)butf(a)=π2(1+a)(1+a)2)=π212a(1+a)20π2tan2t(1+atan2t)dt=π4a(1+a)23)a=20π2tan2t(1+2tan2t)dt=π42(1+2)2.
Commented by abdo imad last updated on 22/Mar/18
a>0.
a>0.

Leave a Reply

Your email address will not be published. Required fields are marked *