a-gt-1-calculate-0-pi-2-dt-1-a-tan-2-t-2-find-0-pi-2-tan-2-t-1-atan-2-t-2-dt-3-find-the-value-of-0-pi-2-tan-2-t-1-2tan-2-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32039 by abdo imad last updated on 18/Mar/18 a>−1calculate∫0π2dt1+atan2t.2)find∫0π2tan2t(1+atan2t)2dt3)findthevalueof∫0π2tan2t(1+2tan2t)2dt. Commented by abdo imad last updated on 22/Mar/18 letputf(a)=∫0π2dt1+atan2tf(a)=∫0π2dt1+asin2tcos2t=∫0π2cos2tcos2t+asin2tdtf(a)=∫0π21+cos(2t)21+cos(2t2+a1−cos(2t)2dt=∫0π21+cos(2t)1+cos(2t)+a(1−cos(2t))dt=∫0π21+cos(2t)1+a+(1−a)cos(2t)thech.2t=ugivef(a)=12∫0π1+cos(u)1+a+(1−a)cos(u)duch.tan(u2)=xgivef(a)=12∫0∞1+1−x21+x21+a+(1−a)1−x21+x22dx1+x2f(a)=∫0∞2(1+x2)((1+a)(1+x2)+(1−a)(1−x2)dx=∫0∞2dx(1+x2)(1+a+(1+a)x2+(1−a)+(a−1)x2)=∫0∞2dx(1+x2)(2+2ax2)=∫0∞dx(1+x2)(1+ax2)=11−a∫0∞(11+x2−a1+ax2)dxf(a)=π2(1−a)−a1−a∫0∞dx1+ax2butwehavebych.ax=α(wetakea>0)∫0∞dx1+ax2=∫0∞11+α2dαa=π2a⇒f(a)=π2(1−a)−a1−aπ2af(a)=π2(1−a)(1−a)⇒f(a)=π2(1+a). Commented by prof Abdo imad last updated on 22/Mar/18 2)wehaveprovedthat∫0π2dt1+atan2t=f(a)=π2(1+a)letderivatef′(a)=−∫0π2tan2t(1+atan2t)2dt⇒∫0π2tan2t(1+atan2t)2dt=−f′(a)butf′(a)=−π2(1+a)′(1+a)2)=−π212a(1+a)2⇒∫0π2tan2t(1+atan2t)dt=π4a(1+a)23)a=2⇒∫0π2tan2t(1+2tan2t)dt=π42(1+2)2. Commented by abdo imad last updated on 22/Mar/18 a>0. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calcul-en-fonction-de-n-k-0-n-3-k-1-k-n-k-0-k-n-sin-kx-k-n-Next Next post: let-give-f-x-0-pi-2-dt-1-x-tant-1-find-a-simple-form-of-f-x-2-calculate-0-pi-2-tant-1-xtant-2-dt-3-give-the-value-of-0-pi-2-tant-1-3-tant-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.