Menu Close

a-gt-b-gt-0-a-2-cos-b-2-sin-a-2-b-2-sin-cos-Find-in-terms-of-a-b-0-pi-2-




Question Number 38151 by ajfour last updated on 22/Jun/18
a > b > 0  a^2 cos θ−b^2 sin θ=(a^2 −b^2 )sin θcos θ  Find θ in terms of a, b.    θ ∈ (0,(π/2)) .
a>b>0a2cosθb2sinθ=(a2b2)sinθcosθFindθintermsofa,b.θ(0,π2).
Commented by behi83417@gmail.com last updated on 23/Jun/18
let: m=e^(iθ)    ,i=(√(−1))  ⇒a^2 .((m^2 +1)/(2m))−b^2 .((m^2 −1)/(2im))=(a^2 −b^2 )((m^4 −1)/(4im^2 ))  ⇒2a^2 .m(m^2 +1)+2mib^2 (m^2 −1)=i(b^2 −a^2 )(m^4 −1)  ⇒ { ((2a^2 .m(m^2 +1)=0   (A))),((2b^2 .m(m^2 −1)=(b^2 −a^2 )(m^4 −1) (B))) :}  ⇒^A (a=0)∨(m=0)∨(m^2 +1)=0  a=0⇒cosθ=1⇒θ=0 ( ×)  m=0⇒e^(iθ) =0  (×)  m^2 +1=0⇒m=±i⇒e^(iθ) =e^(±i(π/2)) ⇒θ=±(π/2) (×)  ⇒^B 2b^2 .m(m^2 −1)=(b^2 −a^2 )(m^4 −1)  ⇒ { ((m^2 −1=0⇒m=±1⇒e^(iθ) =±1=e^(±iπ) )),((⇒θ=±π (×))) :}(×)  2b^2 .m=(b^2 −a^2 )(m^2 +1)⇒((m^2 +1)/(2m))=(b^2 /(b^2 −a^2 ))  ((m^2 +1+2m)/(m^2 +1−2m))=((b^2 +b^2 −a^2 )/(b^2 −b^2 +a^2 ))⇒(((m+1)/(m−1)))^2 =2(b^2 /a^2 )−1   ⇒((m+1)/(m−1))=((√(2b^2 −a^2 ))/a)⇒((m+1+m−1)/(m+1−m+1))=(((√(2b^2 −a^2 ))+a)/( (√(2b^2 −a^2 ))−a))  ⇒m=((b^2 +a.(√(2b^2 −a^2 )))/(b^2 −a^2 ))    ⇒e^(i𝛉) =((b^2 +a.(√(2b^2 −a^2 )))/(b^2 −a^2 ))    ,(p=(b^2 /a^2 ))  ⇒i𝛉=ln((b^2 +a(√(2b^2 −a^2 )))/(b^2 −a^2 )) ⇒i𝛉=ln((p+(√(2p−1)))/(p−1)) .■  =ln((p/(p−1))+((√(1−2p))/(p−1)).i)=  =[(1/2)ln(((p^2 +(1−2p))/((p−1)^2 )))+i.arctg(((√(1−2p))/(p−1))/(p/(p−1)))]=  =[(1/2)ln1+i.arctg((√(1−2p))/p)]=i.arctg((√(1−2p))/p)  ⇒𝛉=arctg((√(1−2p))/p)=arctg((a.(√(a^2 −2b^2 )))/b^2 ).■  sir Ajfour! this is a real solution  for your quistion.
let:m=eiθ,i=1a2.m2+12mb2.m212im=(a2b2)m414im22a2.m(m2+1)+2mib2(m21)=i(b2a2)(m41){2a2.m(m2+1)=0(A)2b2.m(m21)=(b2a2)(m41)(B)A(a=0)(m=0)(m2+1)=0a=0cosθ=1θ=0(×)m=0eiθ=0(×)m2+1=0m=±ieiθ=e±iπ2θ=±π2(×)B2b2.m(m21)=(b2a2)(m41){m21=0m=±1eiθ=±1=e±iπθ=±π(×)(×)2b2.m=(b2a2)(m2+1)m2+12m=b2b2a2m2+1+2mm2+12m=b2+b2a2b2b2+a2(m+1m1)2=2b2a21m+1m1=2b2a2am+1+m1m+1m+1=2b2a2+a2b2a2am=b2+a.2b2a2b2a2eiθ=b2+a.2b2a2b2a2,(p=b2a2)iθ=lnb2+a2b2a2b2a2iθ=lnp+2p1p1.◼=ln(pp1+12pp1.i)==[12ln(p2+(12p)(p1)2)+i.arctg12pp1pp1]==[12ln1+i.arctg12pp]=i.arctg12ppθ=arctg12pp=arctga.a22b2b2.◼sirAjfour!thisisarealsolutionforyourquistion.
Commented by ajfour last updated on 23/Jun/18
there has to be a real solution..
therehastobearealsolution..
Commented by MJS last updated on 23/Jun/18
the mistake is simple but it took me quite  some time to see it:  2a^2 m(m^2 −1)=0 ∧ 2b^2 m(m^2 −1)=(b^2 −a^2 )(m^4 −1)  you solved the second term but the first term  is ≠0, so the whole equation is not solved
themistakeissimplebutittookmequitesometimetoseeit:2a2m(m21)=02b2m(m21)=(b2a2)(m41)yousolvedthesecondtermbutthefirsttermis0,sothewholeequationisnotsolved
Commented by behi83417@gmail.com last updated on 23/Jun/18
dear MJS! the 1#part of eq. is:        2a^2 .m(m^2 +1)=0   ,and it has solved.
You can't use 'macro parameter character #' in math mode2a2.m(m2+1)=0,andithassolved.
Commented by MJS last updated on 23/Jun/18
sorry, typo.  but have you tried your solution with any  real numbers a and b?  a=5  b=3  arctan (3^2 /( (√(5^2 −2×3^2 ))))=arctan ((9(√7))/7)  25cos arctan ((9(√7))/7) −9sin arctan ((9(√7))/7)=  =((25(√(154)))/(44))−((81(√(22)))/(44))≈−1.58368  16sin arctan ((9(√7))/7) × cos arctan ((9(√7))/7)=((18(√7))/(11))≈4.32941  so something went wrong    25cos θ −9sin θ=16sin θ cos θ has the  approximate solution 0.93305, while  arctan ((9(√7))/7)≈1.2849
sorry,typo.buthaveyoutriedyoursolutionwithanyrealnumbersaandb?a=5b=3arctan32522×32=arctan97725cosarctan9779sinarctan977==25154448122441.5836816sinarctan977×cosarctan977=187114.32941sosomethingwentwrong25cosθ9sinθ=16sinθcosθhastheapproximatesolution0.93305,whilearctan9771.2849
Commented by MJS last updated on 23/Jun/18
sorry I misread  still with this value the left side gives  −26.523  but the righr side is  −4.3294  and the new θ≈2.8557 while the solution  is ≈.93305
sorryImisreadstillwiththisvaluetheleftsidegives26.523buttherighrsideis4.3294andthenewθ2.8557whilethesolutionis.93305
Commented by behi83417@gmail.com last updated on 23/Jun/18
dear MJS! please correct my typo or  post correct answer.  i know your answer will the best,finally.
dearMJS!pleasecorrectmytypoorpostcorrectanswer.iknowyouranswerwillthebest,finally.
Commented by MJS last updated on 24/Jun/18
I didn′t mean to offend you, I just wanted to  say there′s some mistake. the solution must  solve the equation... we all should test our  solutions with at least 2 or 3 sets of real  numbers before posting them.
Ididntmeantooffendyou,Ijustwantedtosaytheressomemistake.thesolutionmustsolvetheequationweallshouldtestoursolutionswithatleast2or3setsofrealnumbersbeforepostingthem.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jun/18
t=tan(θ/2)  a^2 (((1−t^2 )/(1+t^2 )))−b^2 (((2t)/(1+t^2 )))=(a^2 −b^2 )((2t)/(1+t^2 ))×((1−t^2 )/(1+t^2 ))  ((a^2 −a^2 t^2 −2b^2 t)/(1+t^2 ))=(((a^2 −b^2 )(2t−2t^3 ))/((1+t^2 )(1+t^2 )))  (1+t^2 )(a^2 −a^2 t^2 −2b^2 t)=(2a^2 t−2a^2 t^3 −2b^2 t+      2b^2 t^3 )  a^2 −a^2 t^2 −2b^2 t+a^2 t^2 −a^2 t^4 −2b^2 t^3 =   2a^2 t−2a^2 t^3 −2b^2 t+2b^2 t^3   a^2 −a^2 t^4 −2b^2 t^3 −2a^2 t+2a^2 t^3 +2b^2 t−2b^2 t^3 =0  t^4 (−a^2 )+t^3 (2a^2 −4b^2 )+t(−2a^2 +2b^2 )+a^2 =0  t_1 +t_2 +t_3 +t_4 =((−(2a^2 −4b^2 ))/(−a^2 ))  Σt_1 t_2 =0  Σt_1 t_2 t_3 =−(((−2a^2 +2b^2 ))/(−a^2 ))  t_1 t_2 t_3 t_4 =(a^2 /(−a^2 ))  wait...
t=tanθ2a2(1t21+t2)b2(2t1+t2)=(a2b2)2t1+t2×1t21+t2a2a2t22b2t1+t2=(a2b2)(2t2t3)(1+t2)(1+t2)(1+t2)(a2a2t22b2t)=(2a2t2a2t32b2t+2b2t3)a2a2t22b2t+a2t2a2t42b2t3=2a2t2a2t32b2t+2b2t3a2a2t42b2t32a2t+2a2t3+2b2t2b2t3=0t4(a2)+t3(2a24b2)+t(2a2+2b2)+a2=0t1+t2+t3+t4=(2a24b2)a2Σt1t2=0Σt1t2t3=(2a2+2b2)a2t1t2t3t4=a2a2wait
Commented by math khazana by abdo last updated on 22/Jun/18
but the train don t wait....
butthetraindontwait.
Commented by rahul 19 last updated on 22/Jun/18
��������
Answered by ajfour last updated on 23/Jun/18
let  for the ellipse of Q.38092  (x^2 /a^2 )+(y^2 /b^2 )=1  ⇒   (dy/dx)= −(x/y)((b^2 /a^2 ))  slope of normal to circle at  point of tangency      (((r−y)/(r−x)))=(y/x)((a^2 /b^2 ))  let    r−x=rcos θ           r−y=rsin θ  ⇒    ((sin θ)/(cos θ))=(((1−sin θ)/(1−cos θ)))((a^2 /b^2 ))  a^2 cos θ(1−sin θ)=b^2 sin θ(1−cos θ)  a^2 sin θ−b^2 sin θ=(a^2 −b^2 )sin θcos θ  ...
letfortheellipseofQ.38092x2a2+y2b2=1dydx=xy(b2a2)slopeofnormaltocircleatpointoftangency(ryrx)=yx(a2b2)letrx=rcosθry=rsinθsinθcosθ=(1sinθ1cosθ)(a2b2)a2cosθ(1sinθ)=b2sinθ(1cosθ)a2sinθb2sinθ=(a2b2)sinθcosθ
Answered by MJS last updated on 25/Jun/18
it′s not nice and probably not useable but  it′s possible  let a=1 and b^2 =q (q=(b^2 /a^2 ))  cos θ −qsin θ −(1−q)sin θ cos θ =0  θ=2arctan t  −((t^4 +2(2q−1)t^3 +2t−1)/(t^4 +2t^2 +1))=0  t^4 +2t+1=0 ⇒ t=±i ∉R ⇒ we can multiplicate       without further trouble  t^4 +2(2q−1)t^3 +2t−1=0  approximate solving with some values of q  leads to the conclusion that this has two  complex and two real solutions. the complex  ones must be α+βi and α−βi and I hope the  real ones are γ+δ and γ−δ.  (t−α−βi)(t−α+βi)(t−γ−δ)(t−γ+δ)=0  t^4 −       −2(α+γ)t^3 +            +(α^2 +4ϑγ+β^2 +γ^2 −δ^2 )t^2 −                 −2(α^2 γ+αγ^2 −αδ^2 +β^2 γ)t+                      +(α^2 +β^2 )(γ^2 −δ^2 )=0  ⇒  [1] 2(2q−1)=−2(α+γ)  [2] 0=α^2 +4ϑγ+β^2 +γ^2 −δ^2   [3] 2=−2(α^2 γ+αγ^2 −αδ^2 +β^2 γ)  [4] −1=(α^2 +β^2 )(γ^2 −δ^2 )    [1] α=−γ−2q+1  [2] β=(√(−α^2 −4αγ−γ^2 +δ^2 ))=           =(√(2γ^2 +(4q−2)γ+δ^2 −(2q−1)^2 ))  [3] 2=−4γ^3 +(6−12q)γ^2 −2(2γ+2q−1)δ^2  ⇒         ⇒ δ=(√(−((2γ^3 +3(2q−1)γ^2 +1)/(2γ+2q−1))))         ⇒ β=(√((2γ^3 +3(2q−1)γ^2 −2q(4q^2 −6q+3))/(2γ+2q−1)))  [4] −1=((16γ^6 +48(2q−1)γ^5 +48(2q−1)^2 γ^4 +16(2q−1)^3 γ^3 +4(2q−1)γ^2 +4(2q−1)^2 γ−1)/((2γ+2q−1)^2 ))              [γ≠(1/2)−q; this will be fulfilled with               q=((1−(2)^(1/3) )/2)<0 so we don′t have to care]          γ^6 +3(2q−1)γ^5 +3(2q−1)^2 γ^4 +(2q−1)^3 γ^3 +(q/2)γ^2 +((q(2q−1))/2)γ+((q(q−1))/4)=0  at this point we can only try to omit the γ^5   by setting γ=u−((3(2q−1))/6)=u−q+(1/2)  which leads to  u^6 −((3(2q−1)^2 )/4)u^4 +((48q^4 −96q^3 +72q^2 −16q+3)/(16))u^2 −(((8q^3 −12q^2 +6q+1)^2 )/(64))=0  we seem to have good luck  set u=(√v)  v^3 −((3(2q−1)^2 )/4)v^2 +((48q^4 −96q^3 +72q^2 −16q+3)/(16))v−(((8q^3 −12q^2 +6q+1)^2 )/(64))=0  omit v^2  by setting v=w−(((2q−1)^2 )/4) leads to  w^3 +(q/2)w+((q(q−1))/4)=0       [x^3 +Px+Q=0 ⇒        ⇒ x_1 =((−(Q/2)+(√((P^3 /(27))+(Q^2 /4)))))^(1/3) +((−(Q/2)−(√((P^3 /(27))+(Q^2 /4)))))^(1/3) ]  w_1 =((q)^(1/3) /2)(((1−q+(√((q−1)^2 +((8q)/(27))))))^(1/3) +((1−q−(√((q−1)^2 +((8q)/(27))))))^(1/3) )  (q−1)^2 +((8q)/(27))>0 ∀q>0 ⇒ w_1 ∈R ∀ q>0  ...now we have to set q and go all the way  back... solutions of polynomes of 4^(th)  degree  usually are even worse...
itsnotniceandprobablynotuseablebutitspossibleleta=1andb2=q(q=b2a2)cosθqsinθ(1q)sinθcosθ=0θ=2arctantt4+2(2q1)t3+2t1t4+2t2+1=0t4+2t+1=0t=±iRwecanmultiplicatewithoutfurthertroublet4+2(2q1)t3+2t1=0approximatesolvingwithsomevaluesofqleadstotheconclusionthatthishastwocomplexandtworealsolutions.thecomplexonesmustbeα+βiandαβiandIhopetherealonesareγ+δandγδ.(tαβi)(tα+βi)(tγδ)(tγ+δ)=0t42(α+γ)t3++(α2+4ϑγ+β2+γ2δ2)t22(α2γ+αγ2αδ2+β2γ)t++(α2+β2)(γ2δ2)=0[1]2(2q1)=2(α+γ)[2]0=α2+4ϑγ+β2+γ2δ2[3]2=2(α2γ+αγ2αδ2+β2γ)[4]1=(α2+β2)(γ2δ2)[1]α=γ2q+1[2]β=α24αγγ2+δ2==2γ2+(4q2)γ+δ2(2q1)2[3]2=4γ3+(612q)γ22(2γ+2q1)δ2δ=2γ3+3(2q1)γ2+12γ+2q1β=2γ3+3(2q1)γ22q(4q26q+3)2γ+2q1[4]1=16γ6+48(2q1)γ5+48(2q1)2γ4+16(2q1)3γ3+4(2q1)γ2+4(2q1)2γ1(2γ+2q1)2[γ12q;thiswillbefulfilledwithq=1232<0sowedonthavetocare]γ6+3(2q1)γ5+3(2q1)2γ4+(2q1)3γ3+q2γ2+q(2q1)2γ+q(q1)4=0atthispointwecanonlytrytoomittheγ5bysettingγ=u3(2q1)6=uq+12whichleadstou63(2q1)24u4+48q496q3+72q216q+316u2(8q312q2+6q+1)264=0weseemtohavegoodlucksetu=vv33(2q1)24v2+48q496q3+72q216q+316v(8q312q2+6q+1)264=0omitv2bysettingv=w(2q1)24leadstow3+q2w+q(q1)4=0[x3+Px+Q=0x1=Q2+P327+Q243+Q2P327+Q243]w1=q32(1q+(q1)2+8q273+1q(q1)2+8q273)(q1)2+8q27>0q>0w1Rq>0nowwehavetosetqandgoallthewaybacksolutionsofpolynomesof4thdegreeusuallyareevenworse
Commented by ajfour last updated on 25/Jun/18
Awesome! many many thanks Sir.
Awesome!manymanythanksSir.
Commented by MJS last updated on 25/Jun/18
you won′t be able to use this for further  simplifications or transformations but at  least it′s possible to calculate approximate  values using a calculator...  by the way, it seems β and δ are imaginary  numbers, so α±βi will be real and γ±δ will  be complex...
youwontbeabletousethisforfurthersimplificationsortransformationsbutatleastitspossibletocalculateapproximatevaluesusingacalculatorbytheway,itseemsβandδareimaginarynumbers,soα±βiwillberealandγ±δwillbecomplex
Commented by MJS last updated on 25/Jun/18
...I didn′t try w_2  and w_3 , if you like to:  w_1 =(A)^(1/3) +(B)^(1/3)   ⇒ w_2 =(−(1/2)+((√3)/2)i)(A)^(1/3) +(−(1/2)−((√3)/2)i)(B)^(1/3)         w_3 =(−(1/2)−((√3)/2)i)(A)^(1/3) +(−(1/2)+((√3)/2)i)(B)^(1/3)
Ididnttryw2andw3,ifyouliketo:w1=A3+B3w2=(12+32i)A3+(1232i)B3w3=(1232i)A3+(12+32i)B3
Commented by ajfour last updated on 26/Jun/18
I got it reduced to a cubic eq.  quite easily, i shall share that  soon..
Igotitreducedtoacubiceq.quiteeasily,ishallsharethatsoon..

Leave a Reply

Your email address will not be published. Required fields are marked *