Menu Close

A-horizontal-force-of-0-8N-is-required-to-pull-a-5kg-block-across-a-table-top-at-a-constant-speed-With-the-block-initially-at-rest-a-20g-bullet-fired-horizontally-into-the-block-to-slide-1-5m-before-




Question Number 29216 by NECx last updated on 05/Feb/18
A horizontal force of 0.8N is  required to pull a 5kg block across  a table top at a constant speed.  With the block initially at rest,a  20g bullet fired horizontally into  the block to slide 1.5m before  coming to rest again.Determine  the speed v of the bullet,where  the bullet is assumed to be  embedded in the block.
$${A}\:{horizontal}\:{force}\:{of}\:\mathrm{0}.\mathrm{8}{N}\:{is} \\ $$$${required}\:{to}\:{pull}\:{a}\:\mathrm{5}{kg}\:{block}\:{across} \\ $$$${a}\:{table}\:{top}\:{at}\:{a}\:{constant}\:{speed}. \\ $$$${With}\:{the}\:{block}\:{initially}\:{at}\:{rest},{a} \\ $$$$\mathrm{20}{g}\:{bullet}\:{fired}\:{horizontally}\:{into} \\ $$$${the}\:{block}\:{to}\:{slide}\:\mathrm{1}.\mathrm{5}{m}\:{before} \\ $$$${coming}\:{to}\:{rest}\:{again}.{Determine} \\ $$$${the}\:{speed}\:{v}\:{of}\:{the}\:{bullet},{where} \\ $$$${the}\:{bullet}\:{is}\:{assumed}\:{to}\:{be} \\ $$$${embedded}\:{in}\:{the}\:{block}. \\ $$
Answered by ajfour last updated on 05/Feb/18
f=0.8 =50μ  ⇒   μ=0.016  mv=(M+m)V  μ(M+m)gs=(1/2)(M+m)V^(  2)   ⇒   V=(√(2μgs))  v= (((M+m)V)/m) = ((M/m)+1)(√(2μgs))    =(251)(√(2×0.016×10×1.5))  ⇒   v =251×(√(48)) m/s             =251×7(1−0.02)             =1757−35 = 1722m/s .
$${f}=\mathrm{0}.\mathrm{8}\:=\mathrm{50}\mu\:\:\Rightarrow\:\:\:\mu=\mathrm{0}.\mathrm{016} \\ $$$${mv}=\left({M}+{m}\right){V} \\ $$$$\mu\left({M}+{m}\right){gs}=\frac{\mathrm{1}}{\mathrm{2}}\left({M}+{m}\right){V}^{\:\:\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{V}=\sqrt{\mathrm{2}\mu{gs}} \\ $$$${v}=\:\frac{\left({M}+{m}\right){V}}{{m}}\:=\:\left(\frac{{M}}{{m}}+\mathrm{1}\right)\sqrt{\mathrm{2}\mu{gs}} \\ $$$$\:\:=\left(\mathrm{251}\right)\sqrt{\mathrm{2}×\mathrm{0}.\mathrm{016}×\mathrm{10}×\mathrm{1}.\mathrm{5}} \\ $$$$\Rightarrow\:\:\:{v}\:=\mathrm{251}×\sqrt{\mathrm{48}}\:{m}/{s} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{251}×\mathrm{7}\left(\mathrm{1}−\mathrm{0}.\mathrm{02}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1757}−\mathrm{35}\:=\:\mathrm{1722}{m}/{s}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *