Menu Close

A-If-w-2-then-the-set-of-points-z-w-1-w-is-contained-in-or-equal-to-B-If-w-1-then-the-set-of-points-z-w-1-w-is-contained-in-or-equal-to-Options-for-both-A-and-B-p-An-ellip




Question Number 21219 by Tinkutara last updated on 16/Sep/17
(A) If ∣w∣ = 2, then the set of points  z = w − (1/w) is contained in or equal to  (B) If ∣w∣ = 1, then the set of points  z = w + (1/w) is contained in or equal to  Options for both A and B:  (p) An ellipse with eccentricity (4/5)  (q) The set of points z satisfying Im z  = 0  (r) The set of points z satisfying ∣Im z∣  ≤ 1  (s) The set of points z satisfying ∣Re z∣  ≤ 2  (t) The set of points z satisfying ∣z∣ ≤ 3
(A)Ifw=2,thenthesetofpointsz=w1wiscontainedinorequalto(B)Ifw=1,thenthesetofpointsz=w+1wiscontainedinorequaltoOptionsforbothAandB:(p)Anellipsewitheccentricity45(q)ThesetofpointszsatisfyingImz=0(r)ThesetofpointszsatisfyingImz1(s)ThesetofpointszsatisfyingRez2(t)Thesetofpointszsatisfyingz3
Answered by Tinkutara last updated on 17/Sep/17
(A) Let w=2(cos θ+isin θ)  Then (1/w)=(1/2)(cos θ−isin θ)  w−(1/w)=(3/2)cos θ+(5/2)isin θ=x+iy(=z)  ⇒cos θ=((2x)/3); sin θ=((2y)/5)  ((4x^2 )/9)+((4y^2 )/(25))=1⇒Ellipse with e = (4/5)  (B) w=cos θ+isin θ; (1/w)=cos θ−isin θ  z=2cos θ  ∴ ∣z∣≤2 and Im(z)=0.
(A)Letw=2(cosθ+isinθ)Then1w=12(cosθisinθ)w1w=32cosθ+52isinθ=x+iy(=z)cosθ=2x3;sinθ=2y54x29+4y225=1Ellipsewithe=45(B)w=cosθ+isinθ;1w=cosθisinθz=2cosθz∣⩽2andIm(z)=0.

Leave a Reply

Your email address will not be published. Required fields are marked *