Menu Close

a-if-y-x-m-1-x-n-where-n-Z-the-set-of-positive-integers-show-that-when-dy-dx-0-x-m-m-n-b-if-y-2-x-5-x-4-show-that-dy-dx-3-x-1-x-4-c-solve-the-equation-si




Question Number 63536 by Rio Michael last updated on 05/Jul/19
a)  if y= x^m (1−x)^n , where n∈ Z^+ , the set of positive integers,  show that when (dy/dx)=0, x=(m/(m+n))  b)if y = 2(x−5)(√(x+4)) ,show that (dy/dx) = ((3(x+1))/( (√(x+4)) ))  c) solve the equation  sinx−sin5x+cos3x = 0 for  0°≤x≤180°
$$\left.{a}\right)\:\:{if}\:{y}=\:{x}^{{m}} \left(\mathrm{1}−{x}\right)^{{n}} ,\:{where}\:{n}\in\:\mathbb{Z}^{+} ,\:{the}\:{set}\:{of}\:{positive}\:{integers}, \\ $$$${show}\:{that}\:{when}\:\frac{{dy}}{{dx}}=\mathrm{0},\:{x}=\frac{{m}}{{m}+{n}} \\ $$$$\left.{b}\right){if}\:{y}\:=\:\mathrm{2}\left({x}−\mathrm{5}\right)\sqrt{{x}+\mathrm{4}}\:,{show}\:{that}\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{3}\left({x}+\mathrm{1}\right)}{\:\sqrt{{x}+\mathrm{4}}\:} \\ $$$$\left.{c}\right)\:{solve}\:{the}\:{equation}\:\:{sinx}−{sin}\mathrm{5}{x}+{cos}\mathrm{3}{x}\:=\:\mathrm{0}\:{for}\:\:\mathrm{0}°\leqslant{x}\leqslant\mathrm{180}° \\ $$
Commented by Prithwish sen last updated on 05/Jul/19
a.(dy/dx) = mx^(m−1)  (1−x)^n −nx^m  (1−x)^(n−1)   ⇒ x^(m−1) (1−x)^(n−1)  [m(1−x)−nx] = 0  ⇒m(1−x) = nx  ⇒ x = (m/(m+n))  b.  (dy/dx) = 2(√(x+4)) +((2(x−5))/(2(√(x+4)))) = ((3(x+1))/( (√(x+4))))  c. −2cos3xsin2x+cos3x = 0  either cos3x=0         or sin2x = (1/2)  ⇒ x= 30^°                          ⇒ x = 15^°   please check.
$$\boldsymbol{\mathrm{a}}.\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{mx}^{\mathrm{m}−\mathrm{1}} \:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} −\mathrm{nx}^{\mathrm{m}} \:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}−\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{x}^{\mathrm{m}−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}−\mathrm{1}} \:\left[\mathrm{m}\left(\mathrm{1}−\mathrm{x}\right)−\mathrm{nx}\right]\:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{m}\left(\mathrm{1}−\mathrm{x}\right)\:=\:\mathrm{nx}\:\:\Rightarrow\:\mathrm{x}\:=\:\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}} \\ $$$$\boldsymbol{\mathrm{b}}.\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{2}\sqrt{\mathrm{x}+\mathrm{4}}\:+\frac{\mathrm{2}\left(\mathrm{x}−\mathrm{5}\right)}{\mathrm{2}\sqrt{\mathrm{x}+\mathrm{4}}}\:=\:\frac{\mathrm{3}\left(\mathrm{x}+\mathrm{1}\right)}{\:\sqrt{\mathrm{x}+\mathrm{4}}} \\ $$$$\boldsymbol{\mathrm{c}}.\:−\mathrm{2cos3xsin2x}+\mathrm{cos3x}\:=\:\mathrm{0} \\ $$$$\mathrm{either}\:\mathrm{cos3x}=\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{or}\:\mathrm{sin2x}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{x}=\:\mathrm{30}^{°} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{x}\:=\:\mathrm{15}^{°} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *