Menu Close

A-large-number-of-bullets-are-fired-in-all-direction-with-same-speed-u-The-maximum-area-on-the-ground-covered-by-these-bullets-will-be-1-pi-u-2-g-2-pi-u-4-g-2-3-pi-4-u-4-g-2-4-pi-2-




Question Number 17999 by Tinkutara last updated on 13/Jul/17
A large number of bullets are fired in  all direction with same speed u. The  maximum area on the ground covered  by these bullets will be  (1) π.(u^2 /g)  (2) π.(u^4 /g^2 )  (3) (π/4).(u^4 /g^2 )  (4) (π/2).(u^4 /g^2 )
$$\mathrm{A}\:\mathrm{large}\:\mathrm{number}\:\mathrm{of}\:\mathrm{bullets}\:\mathrm{are}\:\mathrm{fired}\:\mathrm{in} \\ $$$$\mathrm{all}\:\mathrm{direction}\:\mathrm{with}\:\mathrm{same}\:\mathrm{speed}\:{u}.\:\mathrm{The} \\ $$$$\mathrm{maximum}\:\mathrm{area}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{covered} \\ $$$$\mathrm{by}\:\mathrm{these}\:\mathrm{bullets}\:\mathrm{will}\:\mathrm{be} \\ $$$$\left(\mathrm{1}\right)\:\pi.\frac{{u}^{\mathrm{2}} }{{g}} \\ $$$$\left(\mathrm{2}\right)\:\pi.\frac{{u}^{\mathrm{4}} }{{g}^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:\frac{\pi}{\mathrm{4}}.\frac{{u}^{\mathrm{4}} }{{g}^{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\frac{\pi}{\mathrm{2}}.\frac{{u}^{\mathrm{4}} }{{g}^{\mathrm{2}} } \\ $$
Answered by ajfour last updated on 13/Jul/17
Range is then a maximum, R=(u^2 /g)  Area is a circle of radius R.  So  Area A=πR^2 =π.(u^4 /g^2 )  ; option (2).
$$\mathrm{Range}\:\mathrm{is}\:\mathrm{then}\:\mathrm{a}\:\mathrm{maximum},\:\mathrm{R}=\frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{g}} \\ $$$$\mathrm{Area}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{R}. \\ $$$$\mathrm{So}\:\:\mathrm{Area}\:\mathrm{A}=\pi\mathrm{R}^{\mathrm{2}} =\pi.\frac{\mathrm{u}^{\mathrm{4}} }{\mathrm{g}^{\mathrm{2}} }\:\:;\:\mathrm{option}\:\left(\mathrm{2}\right). \\ $$
Commented by Tinkutara last updated on 14/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *