Menu Close

a-Let-E-x-denote-the-whole-number-part-of-the-real-number-x-determine-E-x-x-and-E-x-x-x-for-x-0-1-b-Calculate-lim-x-0-E-x-x-x-




Question Number 96314 by Ar Brandon last updated on 31/May/20
a\ Let E(x) denote the whole number part of the real  number x, determine E(x^x ) and E(x^x^x  ) for x∈]0,1[  b\ Calculate lim_(x→0) E(x^x^x  )
$$\mathfrak{a}\backslash\:\mathcal{L}\mathfrak{et}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}\right)\:\boldsymbol{\mathrm{d}}\mathfrak{enote}\:\mathfrak{the}\:\mathfrak{whole}\:\mathfrak{number}\:\mathfrak{part}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{real} \\ $$$$\left.\mathfrak{number}\:\mathfrak{x},\:\boldsymbol{\mathrm{d}}\mathfrak{etermine}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}} \right)\:\mathfrak{an}\boldsymbol{\mathrm{d}}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}^{\mathfrak{x}} } \right)\:\mathfrak{for}\:\mathfrak{x}\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\mathfrak{b}\backslash\:\mathcal{C}\mathfrak{alculate}\:\underset{\mathfrak{x}\rightarrow\mathrm{0}} {\mathfrak{lim}}\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}^{\mathfrak{x}} } \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *