Menu Close

a-lna-b-lnb-a-b-1-solve-for-a-and-b-




Question Number 176310 by Linton last updated on 16/Sep/22
a^(lna) =b^(lnb)   a−b=1  solve for a and b
$${a}^{{lna}} ={b}^{{lnb}} \\ $$$${a}−{b}=\mathrm{1} \\ $$$${solve}\:{for}\:{a}\:{and}\:{b} \\ $$
Answered by mr W last updated on 16/Sep/22
(ln a)^2 =(ln b)^2   ⇒ln a=±ln b  ⇒a=b (rejected due to a−b=1)      or a=(1/b)  (1/b)−b=1  b^2 +b−1=0  ⇒b=((−1+(√5))/2)>0  ⇒a=(1/b)=(((√5)+1)/2)
$$\left(\mathrm{ln}\:{a}\right)^{\mathrm{2}} =\left(\mathrm{ln}\:{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{ln}\:{a}=\pm\mathrm{ln}\:{b} \\ $$$$\Rightarrow{a}={b}\:\left({rejected}\:{due}\:{to}\:{a}−{b}=\mathrm{1}\right) \\ $$$$\:\:\:\:{or}\:{a}=\frac{\mathrm{1}}{{b}} \\ $$$$\frac{\mathrm{1}}{{b}}−{b}=\mathrm{1} \\ $$$${b}^{\mathrm{2}} +{b}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{b}=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}>\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}}{{b}}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *