Menu Close

A-lorry-goes-round-an-unbanked-curve-If-the-radius-of-the-curve-is-30m-and-the-coefficient-of-friction-between-the-ground-and-the-tyre-is-0-6-Calculate-the-maximum-speed-of-the-lorry-g-10m-s-2-




Question Number 24177 by NECx last updated on 13/Nov/17
A lorry goes round an unbanked  curve.If the radius of the curve  is 30m and the coefficient of  friction between the ground and  the tyre is 0.6. Calculate the  maximum speed of the lorry.  (g=10m/s^2 )      please buddies help
$${A}\:{lorry}\:{goes}\:{round}\:{an}\:{unbanked} \\ $$$${curve}.{If}\:{the}\:{radius}\:{of}\:{the}\:{curve} \\ $$$${is}\:\mathrm{30}{m}\:{and}\:{the}\:{coefficient}\:{of} \\ $$$${friction}\:{between}\:{the}\:{ground}\:{and} \\ $$$${the}\:{tyre}\:{is}\:\mathrm{0}.\mathrm{6}.\:{Calculate}\:{the} \\ $$$${maximum}\:{speed}\:{of}\:{the}\:{lorry}. \\ $$$$\left({g}=\mathrm{10}{m}/{s}^{\mathrm{2}} \right) \\ $$$$ \\ $$$$ \\ $$$${please}\:{buddies}\:{help} \\ $$
Commented by NECx last updated on 14/Nov/17
please help
$${please}\:{help} \\ $$
Answered by mrW1 last updated on 14/Nov/17
((mv^2 )/r)≤μmg  ⇒v≤(√(μgr))=(√(0.6×10×30))=13.4 m/m=48 km/h
$$\frac{{mv}^{\mathrm{2}} }{{r}}\leqslant\mu{mg} \\ $$$$\Rightarrow{v}\leqslant\sqrt{\mu{gr}}=\sqrt{\mathrm{0}.\mathrm{6}×\mathrm{10}×\mathrm{30}}=\mathrm{13}.\mathrm{4}\:{m}/{m}=\mathrm{48}\:{km}/{h} \\ $$
Commented by NECx last updated on 14/Nov/17
but I thought that the centripetal  force was going to be greater than  the frictional or equal not less   because it is already in motion  thus overcoming the frictional  force.    Please explain why ((mv^2 )/r)≤μmg
$${but}\:{I}\:{thought}\:{that}\:{the}\:{centripetal} \\ $$$${force}\:{was}\:{going}\:{to}\:{be}\:{greater}\:{than} \\ $$$${the}\:{frictional}\:{or}\:{equal}\:{not}\:{less}\: \\ $$$${because}\:{it}\:{is}\:{already}\:{in}\:{motion} \\ $$$${thus}\:{overcoming}\:{the}\:{frictional} \\ $$$${force}. \\ $$$$ \\ $$$${Please}\:{explain}\:{why}\:\frac{{mv}^{\mathrm{2}} }{{r}}\leqslant\mu{mg} \\ $$
Commented by mrW1 last updated on 14/Nov/17
The centripetal force ((mv^2 )/2) is   provided by the friction force f,  and the friction force f may not  be more than μmg, thus  ((mv^2 )/2)≤μmg
$${The}\:{centripetal}\:{force}\:\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}\:{is}\: \\ $$$${provided}\:{by}\:{the}\:{friction}\:{force}\:{f}, \\ $$$${and}\:{the}\:{friction}\:{force}\:{f}\:{may}\:{not} \\ $$$${be}\:{more}\:{than}\:\mu{mg},\:{thus} \\ $$$$\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}\leqslant\mu{mg} \\ $$
Commented by NECx last updated on 15/Nov/17
I now understand.... Thanks sir.
$${I}\:{now}\:{understand}….\:{Thanks}\:{sir}. \\ $$
Answered by ajfour last updated on 14/Nov/17
μmg = mv^2 /r  ⇒  v =(√(μgr))             =(√(0.6×10×30)) =6(√5) m/s .
$$\mu{mg}\:=\:{mv}^{\mathrm{2}} /{r} \\ $$$$\Rightarrow\:\:{v}\:=\sqrt{\mu{gr}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\sqrt{\mathrm{0}.\mathrm{6}×\mathrm{10}×\mathrm{30}}\:=\mathrm{6}\sqrt{\mathrm{5}}\:{m}/{s}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *