Question Number 57664 by necx1 last updated on 09/Apr/19
$${A}\:{luminous}\:{point}\:{P}\:\:{is}\:{inside}\:{a}\:{circle}. \\ $$$${A}\:{ray}\:{emanates}\:{from}\:{P}\:{and}\:{after}\:{two} \\ $$$${reflections}\:{by}\:{the}\:{circle},{returns}\:{to}\:{P}. \\ $$$${If}\:\theta\:{be}\:{the}\:{angle}\:{of}\:{incidence},\:{a}=\:{the} \\ $$$${distance}\:{of}\:{P}\:{from}\:{the}\:{centre}\:{of}\:{the} \\ $$$${circle}\:{and}\:{b}={the}\:{distance}\:{of}\:{the}\:{centre} \\ $$$${from}\:{the}\:{point}\:{where}\:{the}\:{ray}\:{in}\:{its} \\ $$$${course}\:{crosses}\:{its}\:{diameter}\:{through}\:{P}. \\ $$$$ \\ $$$${prove}\:{that}\:\mathrm{tan}\:\theta=\frac{{a}−{b}}{{a}+{b}} \\ $$
Commented by mr W last updated on 10/Apr/19
$${no}\:{image}\:{no}\:{understand}… \\ $$