Menu Close

A-M-n-n-A-3-O-Find-A-2I-1-




Question Number 162960 by mnjuly1970 last updated on 02/Jan/22
      A ∈ M_( n×n)   ,   A^( 3) = O^−          Find ,        ( A−2I )^( −1) =?
$$ \\ $$$$\:\:\:\:\mathrm{A}\:\in\:\mathrm{M}_{\:{n}×{n}} \:\:,\:\:\:\mathrm{A}^{\:\mathrm{3}} =\:\overset{−} {\mathrm{O}}\:\: \\ $$$$\:\:\:\:\:\mathrm{Find}\:,\:\:\:\:\:\:\:\:\left(\:\mathrm{A}−\mathrm{2I}\:\right)^{\:−\mathrm{1}} =? \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 03/Jan/22
(2I)^3 −A^3  =(2I−A)((2I)^2 +(2I)A+A^2 )=8I ⇒  (A−2I)(−(1/8))(4I +2A +A^2 )=I ⇒  (A−2I)^(−1) =−(1/2)I−(1/4)A−(1/8)A^2
$$\left(\mathrm{2I}\right)^{\mathrm{3}} −\mathrm{A}^{\mathrm{3}} \:=\left(\mathrm{2I}−\mathrm{A}\right)\left(\left(\mathrm{2I}\right)^{\mathrm{2}} +\left(\mathrm{2I}\right)\mathrm{A}+\mathrm{A}^{\mathrm{2}} \right)=\mathrm{8I}\:\Rightarrow \\ $$$$\left(\mathrm{A}−\mathrm{2I}\right)\left(−\frac{\mathrm{1}}{\mathrm{8}}\right)\left(\mathrm{4I}\:+\mathrm{2A}\:+\mathrm{A}^{\mathrm{2}} \right)=\mathrm{I}\:\Rightarrow \\ $$$$\left(\mathrm{A}−\mathrm{2I}\right)^{−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{A}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{A}^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *