Menu Close

A-man-observes-that-when-he-moves-up-a-distance-c-metres-on-a-slope-the-angle-of-depression-of-a-point-on-the-horizontal-plane-from-the-base-of-the-slope-is-30-and-when-he-moves-up-further-a-distan




Question Number 15393 by Tinkutara last updated on 10/Jun/17
A man observes that when he moves up  a distance c metres on a slope, the  angle of depression of a point on the  horizontal plane from the base of the  slope is 30°, and when he moves up  further a distance c metres, the angle of  depression of that point is 45°. The  angle of inclination of the slope with the  horizontal is?
Amanobservesthatwhenhemovesupadistancecmetresonaslope,theangleofdepressionofapointonthehorizontalplanefromthebaseoftheslopeis30°,andwhenhemovesupfurtheradistancecmetres,theangleofdepressionofthatpointis45°.Theangleofinclinationoftheslopewiththehorizontalis?
Answered by mrW1 last updated on 10/Jun/17
let  a=distance of the point to foot of slope  α=angle of slope  γ=(a/c)  (a+c cos α)tan 30°=c sin α  (γ+cos α)(1/( (√3)))=sin α    ...(i)  (a+2c cos α)tan 45°=2c sin α  (γ+2cos α)=2sin α    ...(ii)  (ii)/(i):  ((γ+2cos α)/(γ+cos α))×(√3)=2  γ(√3)+2(√3)cos α=2γ+2cos α  2((√3)−1)cos α=(2−(√3))γ  2((√3)−1)cos α=2(2−(√3))(sin α−cos α)  cos α=(2−(√3))sin α  tan α=(1/(2−(√3)))=2+(√3)  α=tan^(−1) (2+(√3))=75°
leta=distanceofthepointtofootofslopeα=angleofslopeγ=ac(a+ccosα)tan30°=csinα(γ+cosα)13=sinα(i)(a+2ccosα)tan45°=2csinα(γ+2cosα)=2sinα(ii)(ii)/(i):γ+2cosαγ+cosα×3=2γ3+23cosα=2γ+2cosα2(31)cosα=(23)γ2(31)cosα=2(23)(sinαcosα)cosα=(23)sinαtanα=123=2+3α=tan1(2+3)=75°
Commented by mrW1 last updated on 10/Jun/17
Commented by Tinkutara last updated on 10/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *