Menu Close

A-mass-of-6kg-lies-on-an-inclined-plane-which-is-smooth-at-angle-to-the-horizontal-where-sin-1-3-if-it-is-connected-to-another-mass-8kg-by-the-same-inelastic-string-passing-over-a-smooth-fixed




Question Number 55306 by Rio Mike last updated on 21/Feb/19
A mass of 6kg lies on an inclined plane  which is smooth at angle θ to the horizontal  where  sin θ= (1/3).if it is connected to  another mass 8kg by the same inelastic string  passing over a smooth fixed pulley  at the top of the plane.the partices are  released from rest ,Find   a) the acceleration of each mass  b) the tension in the string  c) the speed of the masses after 4seconds  d) the distanced covered with this time  in (c) above by the masses.    2017 CGCEB paper 3 Mechanics a/v
$${A}\:{mass}\:{of}\:\mathrm{6}{kg}\:{lies}\:{on}\:{an}\:{inclined}\:{plane} \\ $$$${which}\:{is}\:{smooth}\:{at}\:{angle}\:\theta\:{to}\:{the}\:{horizontal} \\ $$$${where}\:\:\mathrm{sin}\:\theta=\:\frac{\mathrm{1}}{\mathrm{3}}.{if}\:{it}\:{is}\:{connected}\:{to} \\ $$$${another}\:{mass}\:\mathrm{8}{kg}\:{by}\:{the}\:{same}\:{inelastic}\:{string} \\ $$$${passing}\:{over}\:{a}\:{smooth}\:{fixed}\:{pulley} \\ $$$${at}\:{the}\:{top}\:{of}\:{the}\:{plane}.{the}\:{partices}\:{are} \\ $$$${released}\:{from}\:{rest}\:,{Find}\: \\ $$$$\left.{a}\right)\:{the}\:{acceleration}\:{of}\:{each}\:{mass} \\ $$$$\left.{b}\right)\:{the}\:{tension}\:{in}\:{the}\:{string} \\ $$$$\left.{c}\right)\:{the}\:{speed}\:{of}\:{the}\:{masses}\:{after}\:\mathrm{4}{seconds} \\ $$$$\left.{d}\right)\:{the}\:{distanced}\:{covered}\:{with}\:{this}\:{time} \\ $$$${in}\:\left({c}\right)\:{above}\:{by}\:{the}\:{masses}. \\ $$$$ \\ $$$$\mathrm{2017}\:{CGCEB}\:{paper}\:\mathrm{3}\:{Mechanics}\:{a}/{v} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Feb/19
8×10−T=8a [  T−6×10×(1/3)=6a  14a=60   a=((30)/7)m/sec^2  →for both mass  T=80−8×((30)/7)=80(1−(3/7))  T=((320)/7)N  v=0+((30)/7)×4=((120)/7)→for both mass  s=(1/2)×((30)/7)×4^2 =((240)/7)meter
$$\mathrm{8}×\mathrm{10}−{T}=\mathrm{8}{a}\:\left[\right. \\ $$$${T}−\mathrm{6}×\mathrm{10}×\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{6}{a} \\ $$$$\mathrm{14}{a}=\mathrm{60}\:\:\:{a}=\frac{\mathrm{30}}{\mathrm{7}}{m}/{sec}^{\mathrm{2}} \:\rightarrow{for}\:{both}\:{mass} \\ $$$${T}=\mathrm{80}−\mathrm{8}×\frac{\mathrm{30}}{\mathrm{7}}=\mathrm{80}\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{7}}\right) \\ $$$${T}=\frac{\mathrm{320}}{\mathrm{7}}{N} \\ $$$${v}=\mathrm{0}+\frac{\mathrm{30}}{\mathrm{7}}×\mathrm{4}=\frac{\mathrm{120}}{\mathrm{7}}\rightarrow{for}\:{both}\:{mass} \\ $$$${s}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{30}}{\mathrm{7}}×\mathrm{4}^{\mathrm{2}} =\frac{\mathrm{240}}{\mathrm{7}}\boldsymbol{{meter}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *