Menu Close

A-motorist-travelled-from-A-to-B-This-is-a-distance-of-142km-at-an-average-speed-of-60kmhr-1-He-spent-5-2hours-in-B-and-then-returned-to-A-at-an-average-speed-of-80kmh-1-a-At-what-time-did-t




Question Number 45085 by Necxx last updated on 08/Oct/18
A motorist travelled from A to B.  This is a distance of 142km at an  average speed of 60kmhr^(−1) .He  spent 5/2hours in B and then  returned to A at an average speed  of 80kmh^(−1) .  a)At what time did the man arrive  back at A  b)find the average speed for the_   total journey.
$${A}\:{motorist}\:{travelled}\:{from}\:{A}\:{to}\:{B}. \\ $$$${This}\:{is}\:{a}\:{distance}\:{of}\:\mathrm{142}{km}\:{at}\:{an} \\ $$$${average}\:{speed}\:{of}\:\mathrm{60}{kmhr}^{−\mathrm{1}} .{He} \\ $$$${spent}\:\mathrm{5}/\mathrm{2}{hours}\:{in}\:{B}\:{and}\:{then} \\ $$$${returned}\:{to}\:{A}\:{at}\:{an}\:{average}\:{speed} \\ $$$${of}\:\mathrm{80}{kmh}^{−\mathrm{1}} . \\ $$$$\left.{a}\right){At}\:{what}\:{time}\:{did}\:{the}\:{man}\:{arrive} \\ $$$${back}\:{at}\:{A} \\ $$$$\left.{b}\right){find}\:{the}\:{average}\:{speed}\:{for}\:{the}_{} \\ $$$${total}\:{journey}. \\ $$
Answered by MJS last updated on 08/Oct/18
journey starts at A at time=0  arrival in B after ((142km)/(60km hr^(−1) ))=((71)/(30))hr=2hr22min       time=2hr22min  5hr30 min in B, start from B at 7hr52min  arrival in A after ((142km)/(80km hr^(−1) ))=((71)/(40))hr=1hr46min30s       time=9hr38min30s    the average speed (without the 5:30 rest) is  ((2×142km)/((((71)/(30))+((71)/(40)))hr))=((480)/7)km hr^(−1) ≈68.57km hr^(−1)        [with the rest included it′s ((2×142km)/(9hr38min30s))=        =((34080)/(1157))km hr^(−1) ≈29.46km hr^(−1) ]
$$\mathrm{journey}\:\mathrm{starts}\:\mathrm{at}\:{A}\:\mathrm{at}\:\mathrm{time}=\mathrm{0} \\ $$$$\mathrm{arrival}\:\mathrm{in}\:{B}\:\mathrm{after}\:\frac{\mathrm{142km}}{\mathrm{60km}\:\mathrm{hr}^{−\mathrm{1}} }=\frac{\mathrm{71}}{\mathrm{30}}\mathrm{hr}=\mathrm{2hr22min} \\ $$$$\:\:\:\:\:\mathrm{time}=\mathrm{2hr22min} \\ $$$$\mathrm{5hr30}\:\mathrm{min}\:\mathrm{in}\:{B},\:\mathrm{start}\:\mathrm{from}\:{B}\:\mathrm{at}\:\mathrm{7hr52min} \\ $$$$\mathrm{arrival}\:\mathrm{in}\:{A}\:\mathrm{after}\:\frac{\mathrm{142km}}{\mathrm{80km}\:\mathrm{hr}^{−\mathrm{1}} }=\frac{\mathrm{71}}{\mathrm{40}}\mathrm{hr}=\mathrm{1hr46min30s} \\ $$$$\:\:\:\:\:\mathrm{time}=\mathrm{9hr38min30s} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{average}\:\mathrm{speed}\:\left(\mathrm{without}\:\mathrm{the}\:\mathrm{5}:\mathrm{30}\:\mathrm{rest}\right)\:\mathrm{is} \\ $$$$\frac{\mathrm{2}×\mathrm{142km}}{\left(\frac{\mathrm{71}}{\mathrm{30}}+\frac{\mathrm{71}}{\mathrm{40}}\right)\mathrm{hr}}=\frac{\mathrm{480}}{\mathrm{7}}\mathrm{km}\:\mathrm{hr}^{−\mathrm{1}} \approx\mathrm{68}.\mathrm{57km}\:\mathrm{hr}^{−\mathrm{1}} \\ $$$$\:\:\:\:\:\left[\mathrm{with}\:\mathrm{the}\:\mathrm{rest}\:\mathrm{included}\:\mathrm{it}'\mathrm{s}\:\frac{\mathrm{2}×\mathrm{142km}}{\mathrm{9hr38min30s}}=\right. \\ $$$$\left.\:\:\:\:\:\:=\frac{\mathrm{34080}}{\mathrm{1157}}\mathrm{km}\:\mathrm{hr}^{−\mathrm{1}} \approx\mathrm{29}.\mathrm{46km}\:\mathrm{hr}^{−\mathrm{1}} \right] \\ $$
Commented by Necxx last updated on 09/Oct/18
oh...Thanks
$${oh}…{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *