Menu Close

a-mx-b-nx-dx-




Question Number 152110 by peter frank last updated on 25/Aug/21
∫a^(mx) b^(nx) dx
amxbnxdx
Answered by peter frank last updated on 25/Aug/21
∫(a^m b^n )^x   ......
(ambn)x
Answered by Olaf_Thorendsen last updated on 26/Aug/21
F(x) = ∫a^(mx) b^(nx)  dx  F(x) = ∫e^((mlna+nlnb)x)  dx  F(x) = (e^((mlna+nlnb)x) /(mlna+nlnb))+C  F(x) = ((a^(mx) b^(nx) )/(ln(a^m b^n )))+C
F(x)=amxbnxdxF(x)=e(mlna+nlnb)xdxF(x)=e(mlna+nlnb)xmlna+nlnb+CF(x)=amxbnxln(ambn)+C
Commented by peter frank last updated on 26/Aug/21
thank you
thankyou
Answered by puissant last updated on 26/Aug/21
K=∫a^(mx) b^(nx) dx   =a^(mx) ∫b^(nx) dx−∫((d/dx)(a^(mx) ).∫b^(nx) dx)  =a^(mx) (b^(nx) /(nlnb))−∫a^(mx) ×mlna(b^(nx) /(nlnb))dx  =((a^(mx) b^(nx) )/(nlnb))−((mlna)/(nlnb))∫a^(mx) b^(nx) dx  ⇒ K=((mlna)/(nlnb))×K=((a^(mx) b^(nx) )/(nlnb))  ⇒ K(((nlnb+mlna)/(nlnb)))=((a^(mx) b^(nx) )/(nlnb))    ⇒ ∴∵ K=((a^(mx) b^(nx) )/(mlna+nlnb))+C..
K=amxbnxdx=amxbnxdx(ddx(amx).bnxdx)=amxbnxnlnbamx×mlnabnxnlnbdx=amxbnxnlnbmlnanlnbamxbnxdxK=mlnanlnb×K=amxbnxnlnbK(nlnb+mlnanlnb)=amxbnxnlnb∴∵K=amxbnxmlna+nlnb+C..
Commented by peter frank last updated on 26/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *