Menu Close

a-n-1-2n-1-a-n-a-1-1-a-n-




Question Number 92777 by ckkim89 last updated on 09/May/20
a_(n+1) =(2n+1)a_n   a_1 =1  a_n =?
an+1=(2n+1)ana1=1an=?
Commented by mr W last updated on 09/May/20
a_n =(2n−1)a_(n−1) =(2n−1)...3×1=(2n−1)!!
an=(2n1)an1=(2n1)3×1=(2n1)!!
Commented by mathmax by abdo last updated on 09/May/20
(a_(n+1) /a_n ) =(2n+1) ⇒Π_(k=1) ^(n−1)  (a_(k+1) /a_k ) =Π_(k=1) ^(n−1) (2k+1) ⇒  (a_2 /a_1 )×(a_3 /a_2 )×....×(a_n /a_(n−1) ) =3×5×7×....(2n−1) ⇒  a_n =2×3×4×5×6......(2n−1)×2n×(1/(2×4×6×....(2n)))  =(((2n)!)/(2^n ×n!)) ⇒ a_n =(((2n)!)/(n! ×2^n ))
an+1an=(2n+1)k=1n1ak+1ak=k=1n1(2k+1)a2a1×a3a2×.×anan1=3×5×7×.(2n1)an=2×3×4×5×6(2n1)×2n×12×4×6×.(2n)=(2n)!2n×n!an=(2n)!n!×2n
Answered by prakash jain last updated on 09/May/20
a_1 =1  a_2 =3  ...  a_n =Π_(k=0) ^(n−1) (2k+1)
a1=1a2=3an=n1k=0(2k+1)
Commented by ckkim89 last updated on 09/May/20
oh, thanks!:)

Leave a Reply

Your email address will not be published. Required fields are marked *