Menu Close

a-n-is-a-natural-number-sequence-for-n-0-that-satisfy-recurrence-relation-a-m-n-a-m-n-m-n-1-1-2-a-2m-a-2n-for-m-n-nonnegative-integers-Find-a-2016-




Question Number 157795 by naka3546 last updated on 28/Oct/21
{a_n } is a  natural  number  sequence  for  n ≥ 0  that  satisfy  recurrence  relation  a_(m+n)  + a_(m−n)  −m+n = 1 + (1/2) (a_(2m)  +a_(2n) ) ,    for  ∀ m,n  nonnegative  integers .  Find  a_(2016)  .
{an}isanaturalnumbersequenceforn0thatsatisfyrecurrencerelationam+n+amnm+n=1+12(a2m+a2n),form,nnonnegativeintegers.Finda2016.
Answered by Rasheed.Sindhi last updated on 30/Oct/21
 a_(m+n)  + a_(m−n)  −m+n = 1 + (1/2) (a_(2m)  +a_(2n) )_(     A^ )   • determinant (((a_1 =3 (Given))))   • m=n:a_(2n) +a_0 =1+(1/2)(2a_(2n) )⇒a_0 =1      determinant (((a_0 =1)))  ▶n=0:2a_m −m=1+(1/2)(a_(2m) +a_0 )         1+(1/2)a_(2m) +(1/2)=2a_m −m         (1/2)a_(2m) =2a_m −m−(3/2)         a_(2m) =4a_m −2m−3        determinant ((( a_(2n) =4a_n −2n−3)))  a_(2(2n)) =4a_(2n) −2n−3=4(4a_n −2n−3)−2n−3             a_(4n) =16a_n −10n−15        determinant (((a_(4n) =16a_n −10n−15)))  Replacing n by 4n  a_(4(4n)) =16a_(4n) −10n−15  a_(16n) =16(16a_n −10n−15)−10n−15         =256a_n −170n−255  Again replacing n by 2n:  a_(16(2n)) =256a_(2n) −170(2n)−255  a_(32n) =256(4a_n −2n−3)−340n−255          =1024a_n −512n−768−340n−255    =1024a_n −852n−1023   determinant ((( determinant (((a_(32n) =1024a_n −852n−1023)))...A)))  ▶A:(m=2n):   a_(3n) +a_n −n=1+(1/2)(a_(4n) +a_(2n) )     2a_(3n) +2a_n −2n=2+a_(4n) +a_(2n)    2a_(3n) +2a_n −2n−2=4a_(2n) −4n−3+4a_n −2n−3    =4(4a_n −2n−3)−4n−3+4a_n −2n−3  =16a_n −8n−12−4n−3+4a_n −2n−3  =20a_n −14n−18  2a_(3n) =18a_n −12n−16  a_(3n) =9a_n −6n−8    determinant (((a_(3n) =9a_n −6n−8)))  Replacing n by 3n:     a_(3(3n)) =9a_(3n) −6(3n)−8  a_(9n) =9(9a_n −6n−8)−18n−8      =81a_n −72n−80   determinant ((( determinant (((a_(9n) =81a_n −72n−80)))...B)))  ▶A: { ((m→4n)),((n→3n)) :}⇒a_(7n) +a_n −7n+3n_(               =1+(1/2)(a_(8n) +a_(6n) ))   ▶  2a_(7n) +2a_n −8n=2+a_(8n) +a_(6n)   ▶2a_(7n) +2a_n −8n−2=a_(4(2n)) +a_(3(2n))   =16a_(2n) −10(2n)−15+9a_(2n) −6(2n)−8  =25a_(2n) −32n−23=25(4a_n −2n−3)−32n−23  =100a_n −50n−75−32n−23  =100a_n −82n−98  ▶2a_(7n) +2a_n −8n−2=100a_n −82n−98     2a_(7n) =98a_n −74n−96   determinant ((( determinant (((a_(7n) =49a_n −37n−48)))...C)))  ▶Replacing n by 9n in A     a_(32(9n)) =1024a_(9n) −852(9n)−1023    a_(288n) =1024(81a_n −72n−80)−7668n−1023   a_(288n)  =82944a_n −81396n−82943  Again replacing n by 7n    a_(288(7n))  =82944a_(7n) −81396(7n)−82943  a_(2016n) =82944(49a_n −37n−48)−569772n−82943   Now replacing n by 1  a_(2016n) =82944(49a_1 −37(1)−48)−569772(1)−82943  a_(2016n) =82944(49(3)−37−48)−569772−82943              =82944(62)−652715      determinant (( determinant (( determinant ((( a_(2016) =4489813)))))))
am+n+amnm+n=1+12(a2m+a2n)Aa1=3(Given)m=n:a2n+a0=1+12(2a2n)a0=1a0=1n=0:2amm=1+12(a2m+a0)1+12a2m+12=2amm12a2m=2amm32a2m=4am2m3a2n=4an2n3a2(2n)=4a2n2n3=4(4an2n3)2n3a4n=16an10n15a4n=16an10n15Replacingnby4na4(4n)=16a4n10n15a16n=16(16an10n15)10n15=256an170n255Againreplacingnby2n:a16(2n)=256a2n170(2n)255a32n=256(4an2n3)340n255=1024an512n768340n255=1024an852n1023a32n=1024an852n1023AA:(m=2n):a3n+ann=1+12(a4n+a2n)2a3n+2an2n=2+a4n+a2n2a3n+2an2n2=4a2n4n3+4an2n3=4(4an2n3)4n3+4an2n3=16an8n124n3+4an2n3=20an14n182a3n=18an12n16a3n=9an6n8a3n=9an6n8Replacingnby3n:a3(3n)=9a3n6(3n)8a9n=9(9an6n8)18n8=81an72n80a9n=81an72n80BA:{m4nn3na7n+an7n+3n=1+12(a8n+a6n)2a7n+2an8n=2+a8n+a6n2a7n+2an8n2=a4(2n)+a3(2n)=16a2n10(2n)15+9a2n6(2n)8=25a2n32n23=25(4an2n3)32n23=100an50n7532n23=100an82n982a7n+2an8n2=100an82n982a7n=98an74n96a7n=49an37n48CReplacingnby9ninAa32(9n)=1024a9n852(9n)1023a288n=1024(81an72n80)7668n1023a288n=82944an81396n82943Againreplacingnby7na288(7n)=82944a7n81396(7n)82943a2016n=82944(49an37n48)569772n82943Nowreplacingnby1a2016n=82944(49a137(1)48)569772(1)82943a2016n=82944(49(3)3748)56977282943=82944(62)652715a2016=4489813
Commented by naka3546 last updated on 29/Oct/21
I′m  so  sorry, sir.  I  forgot  to  write  that   a_1  = 3 .
Imsosorry,sir.Iforgottowritethata1=3.
Commented by Rasheed.Sindhi last updated on 30/Oct/21
naka sir, the answer is complete  now.please verify it.If it′s not  correct then please check my  answer for mistakes. The approach  is certainly right.
nakasir,theansweriscompletenow.pleaseverifyit.Ifitsnotcorrectthenpleasecheckmyanswerformistakes.Theapproachiscertainlyright.
Commented by naka3546 last updated on 30/Oct/21
yes, it′s  correct,  sir.
yes,itscorrect,sir.
Commented by Rasheed.Sindhi last updated on 30/Oct/21
Thank You!
ThankYou!

Leave a Reply

Your email address will not be published. Required fields are marked *