Menu Close

a-n-is-a-sequence-wich-verify-a-n-1-a-n-1-n-1-n-calculate-n-0-a-n-x-n-




Question Number 96836 by mathmax by abdo last updated on 05/Jun/20
a_n  is a sequence wich verify a_(n+1)  +a_n =(1/(n+1)) ∀n  calculate Σ_(n=0) ^∞  a_n x^n
anisasequencewichverifyan+1+an=1n+1ncalculaten=0anxn
Answered by Smail last updated on 05/Jun/20
f(x)=Σ_(n=0) ^∞ a_n x^n =Σ_(n=0) ^∞ ((1/(n+1))−a_(n+1) )x^n   =Σ_(n=0) ^∞ (x^n /(n+1))−Σ_(n=0) ^∞ a_(n+1) x^n   =−((ln(1−x))/x)−(1/x)(Σ_(n=0) ^∞ a_n x^n −a_0 )\ only if ∣x∣<1  =((a_0 −ln(1−x))/x)−((f_n (x))/x)  f(x)(1+(1/x))=((a_0 −ln(1−x))/x)  f(x)=((a_0 −ln(1−x))/(x+1))  a_0 =1−(1/2)+(1/3)−(1/4)+(1/5)...+_− (1/k)
f(x)=n=0anxn=n=0(1n+1an+1)xn=n=0xnn+1n=0an+1xn=ln(1x)x1x(n=0anxna0)onlyifx∣<1=a0ln(1x)xfn(x)xf(x)(1+1x)=a0ln(1x)xf(x)=a0ln(1x)x+1a0=112+1314+15+1k
Commented by mathmax by abdo last updated on 05/Jun/20
how are you sir smail you are absent for a long time in this forum  you still stand in usa?
howareyousirsmailyouareabsentforalongtimeinthisforumyoustillstandinusa?
Commented by Smail last updated on 05/Jun/20
Yes, I am still in the USA.  I bought a new phone and I didn′t a chance  to install this app until two weeks ago.
Yes,IamstillintheUSA.IboughtanewphoneandIdidntachancetoinstallthisappuntiltwoweeksago.
Commented by Smail last updated on 05/Jun/20
How about you? How is your life with this  corona crisis?
Howaboutyou?Howisyourlifewiththiscoronacrisis?
Commented by mathmax by abdo last updated on 05/Jun/20
i am fine thank you ....
iamfinethankyou.
Answered by mathmax by abdo last updated on 05/Jun/20
we have a_(n+1)  +a_n =(1/(n+1)) ⇒a_(n+1) =(1/(n+1))−a_n  ⇒Σ_(n=0) ^∞  a_(n+1) x^n   =Σ_(n=0) ^∞  (x^n /(n+1))−Σ_(n=0) ^∞  a_n x^n  =Σ_(n=1) ^∞  (x^(n−1) /n) −Σ_(n=0) ^∞  a_n x^n  ⇒  Σ_(n=1) ^∞  a_n x^(n−1)  =(1/x)Σ_(n=1) ^∞  (x^n /n) −Σ_(n=0) ^∞  a_n x^n  ⇒  (1/x)Σ_(n=1) ^∞  a_n x^n  +Σ_(n=0) ^∞  a_n x^n   =−(1/x)ln(1−x) ⇒  (1/x)(Σ_(n=0) ^∞  a_n x^n −a_0 )+Σ_(n=0) ^∞  a_n x^n  =−((ln(1−x))/x) ⇒  ((1/x)+1)Σ_(n=0) a_n x^n  =(a_0 /x)−((ln(1−x))/x) ⇒(x+1)Σ_(n=0) ^∞  a_n x^n  =a_0 −ln(1−x) ⇒  Σ_(n=0) ^∞  a_n x^n  =(a_0 /(x+1))−((ln(1−x))/(x+1))
wehavean+1+an=1n+1an+1=1n+1ann=0an+1xn=n=0xnn+1n=0anxn=n=1xn1nn=0anxnn=1anxn1=1xn=1xnnn=0anxn1xn=1anxn+n=0anxn=1xln(1x)1x(n=0anxna0)+n=0anxn=ln(1x)x(1x+1)n=0anxn=a0xln(1x)x(x+1)n=0anxn=a0ln(1x)n=0anxn=a0x+1ln(1x)x+1
Commented by mathmax by abdo last updated on 05/Jun/20
another way we can explicit a_n  we have a_n  +a_(n+1) =(1/(n+1)) ⇒  Σ_(k=0) ^n (−1)^k (a_k  +a_(k+1) ) =Σ_(k=0) ^n  (((−1)^k )/(k+1)) ⇒  (a_0 +a_1 )−(a_1 +a_2 )+.....(−1)^(n−1) (a_(n−1)  +a_n ) +(−1)^n (a_(n ) +a_(n+1) )  =Σ_(k=0) ^n  (((−1)^k )/(k+1)) ⇒a_0 +(−1)^n  a_(n+1) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k)  (−1)^n  a_(n+1) =−a_0 −Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k) ⇒  a_(n+1) =(−1)^(n+1)  a_0  +(−1)^(n+1)  Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k) ⇒  a_n =(−1)^n  a_0  +(−1)^n  Σ_(k=1) ^n  (((−1)^(k−1) )/k)  (for n>0)   ⇒  Σ_(n=0) ^∞  a_n x^n  =a_0  Σ_(n=0) ^∞ (−1)^n  x^n  +Σ_(n=0) ^∞ (−1)^n {Σ_(k=1) ^(n ) (((−1)^(k−1) )/k)} x^n   =(a_0 /(x+1)) +Σ_(n=0) ^∞  (−1)^(n ) { Σ_(k=1) ^n  (((−1)^(k−1) )/k)}x^n
anotherwaywecanexplicitanwehavean+an+1=1n+1k=0n(1)k(ak+ak+1)=k=0n(1)kk+1(a0+a1)(a1+a2)+..(1)n1(an1+an)+(1)n(an+an+1)=k=0n(1)kk+1a0+(1)nan+1=k=1n+1(1)k1k(1)nan+1=a0k=1n+1(1)k1kan+1=(1)n+1a0+(1)n+1k=1n+1(1)k1kan=(1)na0+(1)nk=1n(1)k1k(forn>0)n=0anxn=a0n=0(1)nxn+n=0(1)n{k=1n(1)k1k}xn=a0x+1+n=0(1)n{k=1n(1)k1k}xn
Commented by mathmax by abdo last updated on 05/Jun/20
∣x∣<1
x∣<1

Leave a Reply

Your email address will not be published. Required fields are marked *