Menu Close

A-nice-question-lt-3-If-a-quadratic-equation-1-q-p-2-2-x-2-p-1-q-x-q-q-1-p-2-2-0-has-equal-roots-prove-that-p-2-4q-




Question Number 113684 by ZiYangLee last updated on 14/Sep/20
A nice question <3    If a quadratic equation   (1−q+(p^2 /2))x^2 +p(1+q)x+q(q−1)+(p^2 /2)=0  has equal roots, prove that p^2 =4q
Anicequestion<3Ifaquadraticequation(1q+p22)x2+p(1+q)x+q(q1)+p22=0hasequalroots,provethatp2=4q
Commented by Dwaipayan Shikari last updated on 14/Sep/20
p^2 =4q  (1−q+((4q)/2))x^2 +p(1+q)+q^2 −q+2q=0  (1+q)x^2 +p(1+q)+q(1+q)=0  It has roots  α+β=−p((1+q)/(1+q))=−p  αβ=q=(p^2 /4)  (α−β)=(√(p^2 −4.(p^2 /4))) =0  α=β   (Which is true)
p2=4q(1q+4q2)x2+p(1+q)+q2q+2q=0(1+q)x2+p(1+q)+q(1+q)=0Ithasrootsα+β=p1+q1+q=pαβ=q=p24(αβ)=p24.p24=0α=β(Whichistrue)
Answered by MJS_new last updated on 14/Sep/20
(1−q+(p^2 /2))x^2 +p(1+q)x+q(q−1)+(p^2 /2)=0  x^2 +((2p(q+1))/(p^2 −2(q−1)))x+((p^2 +2q(q−1))/(p^2 −2(q−1)))=0  x=t−((p(q+1))/(p^2 −2(q−1)))  t^2 −(((p^2 −4q)(p^2 +q^2 −2q+1))/((p^2 −2(q−1))^2 ))=0  x_1 =x_2  ⇔ t=0  ⇒ p^2 −4q=0∨p^2 +q^2 −2q+1=0  ⇒ p^2 =4q  (p^2 +q^2 −2q+1=0 ⇒ p^2 =−(q−1)^2  ⇒ p∉R)
(1q+p22)x2+p(1+q)x+q(q1)+p22=0x2+2p(q+1)p22(q1)x+p2+2q(q1)p22(q1)=0x=tp(q+1)p22(q1)t2(p24q)(p2+q22q+1)(p22(q1))2=0x1=x2t=0p24q=0p2+q22q+1=0p2=4q(p2+q22q+1=0p2=(q1)2pR)
Commented by ZiYangLee last updated on 15/Sep/20
Cool!
Cool!

Leave a Reply

Your email address will not be published. Required fields are marked *