Menu Close

A-normal-chord-to-an-ellipse-x-2-a-2-y-2-b-2-1-make-an-angle-of-45-with-the-axis-prove-that-the-square-of-its-length-is-equal-to-32a-4-b-4-a-2-b-2-3-




Question Number 51921 by peter frank last updated on 01/Jan/19
A normal chord to an   ellipse (x^2 /a^2 )+(y^2 /b^2 )=1  make an angle of 45^°   with the axis.prove  that the square of its   length is equal to  ((32a^4 b^4 )/((a^2 +b^2 )^3 ))
Anormalchordtoanellipsex2a2+y2b2=1makeanangleof45°withtheaxis.provethatthesquareofitslengthisequalto32a4b4(a2+b2)3
Answered by ajfour last updated on 01/Jan/19
let   x_P = acos θ  , y_P =bsin θ    −(dx/dy)∣_P  = ((asin θ)/(bcos θ)) = (a/b)tan θ = tan 45°=1  ⇒ tan θ = (b/a)  ⇒  acos θ = (a^2 /( (√(a^2 +b^2 )))) = (a^2 /s)   (say)         bsin θ = (b^2 /s)  eq. of normal   let this normal intersects ellipse  aot the other point Q(h,k)  let  PQ = l    h = acos θ−(l/( (√2)))  , k = bcos θ−(l/( (√2)))  or    Q = ((a^2 /s)−(l/( (√2))) , (b^2 /s)−(l/( (√2))))  as Q is on ellipse,        b^2 ((a^2 /s)−(l/( (√2))))^2 +a^2 ((b^2 /s)−(l/( (√2))))^2 = a^2 b^2   ⇒  b^2 (a^2 (√2)−sl)^2 +a^2 (b^2 (√2)−sl)^2 = 2a^2 b^2 s^2   ⇒  2a^2 b^2 (a^2 +b^2 )+s^2 l^2 (a^2 +b^2 )            −2(√2)sa^2 b^2 l −2a^2 b^2 s^2  = 0  ⇒ since  s^2  = a^2 +b^2   , we get    l^2 −((2(√2)a^2 b^2 )/s^3 )l = 0  ⇒   l^2  = ((8a^4 b^4 )/((a^2 +b^2 )^3 ))  .
letxP=acosθ,yP=bsinθdxdyP=asinθbcosθ=abtanθ=tan45°=1tanθ=baacosθ=a2a2+b2=a2s(say)bsinθ=b2seq.ofnormalletthisnormalintersectsellipseaottheotherpointQ(h,k)letPQ=lh=acosθl2,k=bcosθl2orQ=(a2sl2,b2sl2)asQisonellipse,b2(a2sl2)2+a2(b2sl2)2=a2b2b2(a22sl)2+a2(b22sl)2=2a2b2s22a2b2(a2+b2)+s2l2(a2+b2)22sa2b2l2a2b2s2=0sinces2=a2+b2,wegetl222a2b2s3l=0l2=8a4b4(a2+b2)3.
Commented by peter frank last updated on 01/Jan/19
thank sir
thanksir

Leave a Reply

Your email address will not be published. Required fields are marked *