Question Number 50979 by peter frank last updated on 23/Dec/18
$$\left.{a}\right){Normal}\:{to}\:{any}\:{point}\:{on} \\ $$$${the}\:{hyperbola}\:{XY}={C} \\ $$$${meet}\:{the}\:{x}−{axis}\:{at}\:{A} \\ $$$${and}\:{tangents}\:{meets} \\ $$$${the}\:{y}−{axis}\:{at}\:{B}.{find}\:{the} \\ $$$${locus}\:{of}\:{the}\:{mid}\:{point}\:{of}\:{AB} \\ $$$$\left.{b}\right){find}\:\:{the}\:{equation}\:{of}\: \\ $$$${assymptotes}\:{of} \\ $$$$\left({i}\right)\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$$$\left({ii}\right)\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{16}}−\frac{\left({y}−\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1} \\ $$
Commented by ggururajguru0219@gmail.com last updated on 23/Dec/18
$${vg}\mathrm{5}{n} \\ $$
Answered by mr W last updated on 23/Dec/18
$$\left({a}\right) \\ $$$${xy}={c} \\ $$$${y}'=−\frac{{c}}{{x}^{\mathrm{2}} } \\ $$$${P}\left({h},\frac{{c}}{{h}}\right) \\ $$$${y}'=−\frac{{c}}{{h}^{\mathrm{2}} } \\ $$$${tangent}: \\ $$$${y}=\frac{{c}}{{h}}−\frac{{c}}{{h}^{\mathrm{2}} }\left({x}−{h}\right) \\ $$$${B}\left(\mathrm{0},{y}_{{B}} \right) \\ $$$$\Rightarrow{y}_{{B}} =\frac{\mathrm{2}{c}}{{h}} \\ $$$${normal}: \\ $$$${y}=\frac{{c}}{{h}}+\frac{{h}^{\mathrm{2}} }{{c}}\left({x}−{h}\right) \\ $$$${A}\left({x}_{{A}} ,\mathrm{0}\right) \\ $$$$\mathrm{0}=\frac{{c}}{{h}}+\frac{{h}^{\mathrm{2}} }{{c}}\left({x}_{{A}} −{h}\right) \\ $$$$\Rightarrow{x}_{{A}} ={h}−\frac{{c}^{\mathrm{2}} }{{h}^{\mathrm{3}} } \\ $$$${mid}\:{point}\:{of}\:{AB}:\:\left({p},{q}\right) \\ $$$${q}=\frac{{y}_{{B}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{c}}{{h}}=\frac{{c}}{{h}} \\ $$$$\Rightarrow{h}=\frac{{c}}{{q}} \\ $$$${p}=\frac{{x}_{{A}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left({h}−\frac{{c}^{\mathrm{2}} }{{h}^{\mathrm{3}} }\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{c}}{{q}}−\frac{{q}^{\mathrm{3}} }{{c}}\right) \\ $$$$\mathrm{2}{cpq}={c}^{\mathrm{2}} −{q}^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{2}{cxy}={c}^{\mathrm{2}} −{y}^{\mathrm{4}} \\ $$
Commented by mr W last updated on 23/Dec/18
Commented by peter frank last updated on 23/Dec/18
$${thank}\:{you} \\ $$
Commented by peter frank last updated on 23/Dec/18
$${sir}\:{please}\:{check}\:{third}\:{line} \\ $$$${P}\left({h},\frac{{c}}{{h}}\right)\:{it}\:{should}\:\:{be}\:{P}\left({ch},\frac{{c}}{{h}}\right) \\ $$
Commented by mr W last updated on 23/Dec/18
$${what}\:{is}\:{your}\:{curve}? \\ $$$${xy}={c}\:{or}\:{xy}={c}^{\mathrm{2}} \:? \\ $$$$ \\ $$$${if}\:{xy}={c}\:{as}\:{the}\:{question}\:{says},\:{then} \\ $$$${the}\:{point}\:{is}\:{P}\left({h},\frac{{c}}{{h}}\right)\:{because}\:{h}×\frac{{c}}{{h}}={c}. \\ $$
Commented by peter frank last updated on 23/Dec/18
$${very}\:{sorry}\:{sir}\:\:{found}\:{my}\:{mistake}.{my} \\ $$$${xy}={c}^{\mathrm{2}} \:{insteady}\:{of}\:{xy}={c} \\ $$
Answered by peter frank last updated on 23/Dec/18
$$\left.{b}\right)\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$$${a}=\mathrm{2}\:\:\:{b}=\sqrt{\mathrm{5}} \\ $$$${y}=\pm\frac{{b}}{{a}}{x} \\ $$$${y}=\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\left.{ii}\right)\:\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{16}}−\frac{\left({y}−\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1} \\ $$$${a}=\mathrm{4}\:\:\:\:{b}=\mathrm{3}\:\:{p}=\mathrm{1}\:\:\:{q}=\mathrm{3} \\ $$$${y}−{q}=\pm\frac{{b}}{{a}}\left({x}−{p}\right) \\ $$$${y}−\mathrm{3}=\pm\frac{\mathrm{3}}{\mathrm{4}}\left({x}−\mathrm{1}\right) \\ $$$${y}=\frac{\mathrm{3}}{\mathrm{4}}{x}−\frac{\mathrm{9}}{\mathrm{4}}\:{or}\:−\frac{\mathrm{3}}{\mathrm{4}}{x}+\frac{\mathrm{9}}{\mathrm{4}} \\ $$
Answered by peter frank last updated on 23/Dec/18
$$\left.{a}\right)\:{equation}\:{of}\:{normal} \\ $$$${at}\:{xy}={c} \\ $$$${y}−\frac{{xt}^{\mathrm{2}} }{{c}}+\frac{{t}^{\mathrm{3}} }{{c}}−\frac{{c}}{{t}}=\mathrm{0} \\ $$$${A}\left({x},\mathrm{0}\right)\Rightarrow{A}\left({t}−\frac{{c}^{\mathrm{2}} }{{t}^{\mathrm{3}} },\mathrm{0}\right) \\ $$$${from}\:{tangent}\:{at}\:{xy}={c} \\ $$$${yt}^{\mathrm{2}} +{cx}−\mathrm{2}{ct}=\mathrm{0} \\ $$$${B}\left(\mathrm{0},{y}\right)\Rightarrow\left(\mathrm{0},\frac{\mathrm{2}{c}}{{t}}\right) \\ $$$${A}\left({t}−\frac{{c}^{\mathrm{2}} }{{t}^{\mathrm{3}} },\mathrm{0}\right),{B}\left(\mathrm{0},\frac{\mathrm{2}{c}}{{t}\:\:}\right) \\ $$$$\left.{x},{y}\right)=\left(\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} }{\mathrm{2}},\frac{{y}_{\mathrm{1}} +{y}_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\left({x},{y}\right)=\left(\frac{{ct}}{\mathrm{2}}−\frac{{c}}{\mathrm{2}{t}^{\mathrm{3}} }\right),\frac{{c}}{{y}} \\ $$$${x}=\frac{{c}}{\mathrm{2}}−\frac{{c}}{\mathrm{2}{t}^{\mathrm{3}} }……\left({i}\right) \\ $$$${t}=\frac{{c}}{{y}}…….\left({ii}\right) \\ $$$${sub}\:{ii}\:\:{in}\:{i} \\ $$$$\mathrm{2}{x}=\frac{{c}}{{y}}−\frac{{y}^{\mathrm{3}} }{{c}} \\ $$$${y}^{\mathrm{4}} +\mathrm{2}{xcy}−{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$
Commented by mr W last updated on 23/Dec/18
$${please}\:{check}\:{eqn}.\:{of}\:{normal}: \\ $$$${y}−{xt}^{\mathrm{2}} +{ct}^{\mathrm{3}} −\frac{{c}}{{t}}=\mathrm{0} \\ $$$${it}\:{should}\:{be},\:{i}\:{think}, \\ $$$${y}−\frac{{xt}^{\mathrm{2}} }{{c}}+\frac{{t}^{\mathrm{3}} }{{c}}−\frac{{c}}{{t}}=\mathrm{0} \\ $$
Commented by peter frank last updated on 23/Dec/18
$$\:{Mrw}\:{please}\:{check}\:{right}\:{or}\:{wrong} \\ $$
Commented by mr W last updated on 23/Dec/18
$${please}\:{check}\:{eqn}.\:{of}\:{tangent}: \\ $$$${yt}^{\mathrm{2}} +{x}−\mathrm{2}{ct}=\mathrm{0}{pp} \\ $$$${it}\:{should}\:{be},\:{i}\:{think}, \\ $$$${yt}^{\mathrm{2}} +{cx}−\mathrm{2}{ct}=\mathrm{0} \\ $$
Commented by mr W last updated on 23/Dec/18
$${please}\:{check}: \\ $$$${the}\:{final}\:{eqn}.\:{should}\:{be},\:{i}\:{think}, \\ $$$${y}^{\mathrm{4}} +\mathrm{2}{cxy}−{c}^{\mathrm{2}} =\mathrm{0} \\ $$
Commented by peter frank last updated on 23/Dec/18
$${equation}\:{of}\:{tangent}\:{and}\:\:{normql} \\ $$$${to}\:{xy}={c}\:{at}\:\left({ct},\frac{{c}}{{t}}\right) \\ $$$${x}={ct} \\ $$$${y}=\frac{{c}}{{t}} \\ $$$${y}^{'} =−\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$$\frac{{y}−\frac{{c}}{{t}}}{{x}−{ct}}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${yt}^{\mathrm{2}} +{x}−\mathrm{2}{ct}=\mathrm{0} \\ $$$${normal}\:{to}\:{xy}={c} \\ $$$${y}^{'} ={t}^{\mathrm{2}} \\ $$$$\frac{{y}−\frac{{c}}{{t}}}{{x}−{ct}}={t}^{\mathrm{2}} \\ $$$${xt}^{\mathrm{2}} −{ct}^{\mathrm{3}} ={y}−\frac{{c}}{{t}} \\ $$$${xt}^{\mathrm{2}} −{ct}^{\mathrm{3}} +\frac{{c}}{{t}}={y} \\ $$$$ \\ $$
Commented by peter frank last updated on 23/Dec/18
$${Mrw}\:{sir}\:{please}\:{check} \\ $$
Commented by mr W last updated on 23/Dec/18
$${if}\:{xy}={c},\:{then} \\ $$$${at}\:{point}\:\left({t},\frac{{c}}{{t}}\right),\:{not}\:{at}\:\left({ct},\frac{{c}}{{t}}\right) \\ $$$${y}'=−\frac{{c}}{{x}^{\mathrm{2}} }=−\frac{{c}}{{t}^{\mathrm{2}} } \\ $$$$…… \\ $$
Commented by peter frank last updated on 23/Dec/18
$${your}\:{absolute}\:{right} \\ $$