Menu Close

a-nser-to-question-25765-we-put-I-0-cos-x-2n-1-x-2-1-dx-and-J-0-sin-x-2n-1-x-2-1-dx-we-have-2-I-iJ-R-e-ix-2n-1-x-2-1-dx-let-f-z-e-ix-2n-1-x-2-




Question Number 25769 by abdo imad last updated on 14/Dec/17
a−nser to question 25765...we put I=∫_0 ^∞ (cos(x^(2n) )(1+x^2 )^(−1) dx and J=∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx...we have 2(I+iJ)=∫_R e^(ix^(2n) ) (1+x^2 )^(−1) dx...let f(z)=e^(ix^(2n) ) (1+x^2 )^(−1) by residus therem ∫_R f(z)dz = 2iπRes(f.i) but Res(f.i)= lim_(z−i) (z−i)f(z)=e^(i(i)^(2n) ) = e^(i(−1)_ ^n ) (2i)^(−1) then ∫_R f(z)dz = πe^((−1)^n ) = π( cos(−1)^n  +isin(−1)^n ) then ∫_0 ^∞ cos(x^(2n) )(1+x^2 )^(−1) dx =π2^(−1) cos(−1)^n and ∫_0 ^∞ sin(x^(2n) )(1+x^2 )^(−1) dx=π.2^(−1) sin(−1)^n_  <>....
$${a}−{nser}\:{to}\:{question}\:\mathrm{25765}…{we}\:{put}\:{I}=\int_{\mathrm{0}} ^{\infty} \left({cos}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:{and}\:{J}=\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}…{we}\:{have}\:\mathrm{2}\left({I}+{iJ}\right)=\int_{{R}} {e}^{{ix}^{\mathrm{2}{n}} } \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}…{let}\:{f}\left({z}\right)={e}^{{ix}^{\mathrm{2}{n}} } \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {by}\:{residus}\:{therem}\:\int_{{R}} {f}\left({z}\right){dz}\:=\:\mathrm{2}{i}\pi{Res}\left({f}.{i}\right)\:{but}\:{Res}\left({f}.{i}\right)=\:{lim}_{{z}−{i}} \left({z}−{i}\right){f}\left({z}\right)={e}^{{i}\left({i}\right)^{\mathrm{2}{n}} } =\:{e}^{{i}\left(−\mathrm{1}\right)_{} ^{{n}} } \left(\mathrm{2}{i}\right)^{−\mathrm{1}} {then}\:\int_{{R}} {f}\left({z}\right){dz}\:=\:\pi{e}^{\left(−\mathrm{1}\right)^{{n}} } =\:\pi\left(\:{cos}\left(−\mathrm{1}\right)^{{n}} \:+{isin}\left(−\mathrm{1}\right)^{{n}} \right)\:{then}\:\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:=\pi\mathrm{2}^{−\mathrm{1}} {cos}\left(−\mathrm{1}\right)^{{n}} {and}\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}{n}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}=\pi.\mathrm{2}^{−\mathrm{1}} {sin}\left(−\mathrm{1}\right)^{{n}_{} } <>….\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *