Menu Close

A-number-n-leaves-a-remainder-of-22-when-divided-by-24-and-remainder-30-when-divided-by-33-Find-the-least-possible-value-of-n-




Question Number 86141 by TawaTawa1 last updated on 27/Mar/20
A number n leaves a remainder of  22  when divided by 24 and  remainder  30  when divided by  33.  Find the least possible  value of  n
$$\mathrm{A}\:\mathrm{number}\:\mathrm{n}\:\mathrm{leaves}\:\mathrm{a}\:\mathrm{remainder}\:\mathrm{of}\:\:\mathrm{22}\:\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{24}\:\mathrm{and} \\ $$$$\mathrm{remainder}\:\:\mathrm{30}\:\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\:\mathrm{33}.\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{possible} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\mathrm{n} \\ $$
Commented by mr W last updated on 27/Mar/20
there is no such number!
$${there}\:{is}\:{no}\:{such}\:{number}! \\ $$
Commented by Kunal12588 last updated on 27/Mar/20
n=24p+22  n=33q+30  24p−33q=8  ⇒24p−33p+33δ=0   [let q=p−δ]  ⇒33δ−9p=8  ⇒11δ−3p=(8/3)  ⇒ no solution in natural no.
$${n}=\mathrm{24}{p}+\mathrm{22} \\ $$$${n}=\mathrm{33}{q}+\mathrm{30} \\ $$$$\mathrm{24}{p}−\mathrm{33}{q}=\mathrm{8} \\ $$$$\Rightarrow\mathrm{24}{p}−\mathrm{33}{p}+\mathrm{33}\delta=\mathrm{0}\:\:\:\left[{let}\:{q}={p}−\delta\right] \\ $$$$\Rightarrow\mathrm{33}\delta−\mathrm{9}{p}=\mathrm{8} \\ $$$$\Rightarrow\mathrm{11}\delta−\mathrm{3}{p}=\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\Rightarrow\:{no}\:{solution}\:{in}\:{natural}\:{no}. \\ $$
Commented by Kunal12588 last updated on 27/Mar/20
sir can anyone suggest a book on number  theory please, from the basics.
$${sir}\:{can}\:{anyone}\:{suggest}\:{a}\:{book}\:{on}\:{number} \\ $$$${theory}\:{please},\:{from}\:{the}\:{basics}. \\ $$
Commented by Rio Michael last updated on 27/Mar/20
Edexcel AS and A level further mathematics
$$\mathrm{Edexcel}\:\mathrm{AS}\:\mathrm{and}\:\mathrm{A}\:\mathrm{level}\:\mathrm{further}\:\mathrm{mathematics} \\ $$
Commented by TawaTawa1 last updated on 27/Mar/20
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *