Menu Close

a-parabola-y-x-2-15x-36-cuts-the-x-axis-at-P-and-Q-a-circle-is-drawn-through-P-and-Q-so-that-the-origin-is-outside-it-then-find-the-length-of-tangent-to-the-circle-from-0-0-




Question Number 147009 by gsk2684 last updated on 17/Jul/21
a parabola y=x^2 −15x+36 cuts the   x axis at P  and Q. a circle is drawn  through P and Q so that the origin  is outside it. then find the length   of tangent to the circle from (0,0)?
$${a}\:{parabola}\:{y}={x}^{\mathrm{2}} −\mathrm{15}{x}+\mathrm{36}\:{cuts}\:{the}\: \\ $$$${x}\:{axis}\:{at}\:{P}\:\:{and}\:{Q}.\:{a}\:{circle}\:{is}\:{drawn} \\ $$$${through}\:{P}\:{and}\:{Q}\:{so}\:{that}\:{the}\:{origin} \\ $$$${is}\:{outside}\:{it}.\:{then}\:{find}\:{the}\:{length}\: \\ $$$${of}\:{tangent}\:{to}\:{the}\:{circle}\:{from}\:\left(\mathrm{0},\mathrm{0}\right)? \\ $$
Answered by mr W last updated on 17/Jul/21
y=x^2 −15x+36=(x−3)(x−12  ⇒P(3,0)  ⇒Q(12,0)  ⇒M(((15)/2),0)  let C(h,0)  OC^2 =(((15)/2))^2 +h^2   AC^2 =CP^2 =(((12−3)/2))^2 +h^2 =((9/2))^2 +h^2   OA^2 =OC^2 −AC^2 =(((15)/2))^2 −((9/2))^2   ⇒OA=((√(15^2 −9^2 ))/2)=((12)/2)=6  that means the length of tangent  is always 6.
$${y}={x}^{\mathrm{2}} −\mathrm{15}{x}+\mathrm{36}=\left({x}−\mathrm{3}\right)\left({x}−\mathrm{12}\right. \\ $$$$\Rightarrow{P}\left(\mathrm{3},\mathrm{0}\right) \\ $$$$\Rightarrow{Q}\left(\mathrm{12},\mathrm{0}\right) \\ $$$$\Rightarrow{M}\left(\frac{\mathrm{15}}{\mathrm{2}},\mathrm{0}\right) \\ $$$${let}\:{C}\left({h},\mathrm{0}\right) \\ $$$${OC}^{\mathrm{2}} =\left(\frac{\mathrm{15}}{\mathrm{2}}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} \\ $$$${AC}^{\mathrm{2}} ={CP}^{\mathrm{2}} =\left(\frac{\mathrm{12}−\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} =\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} \\ $$$${OA}^{\mathrm{2}} ={OC}^{\mathrm{2}} −{AC}^{\mathrm{2}} =\left(\frac{\mathrm{15}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{OA}=\frac{\sqrt{\mathrm{15}^{\mathrm{2}} −\mathrm{9}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\mathrm{12}}{\mathrm{2}}=\mathrm{6} \\ $$$${that}\:{means}\:{the}\:{length}\:{of}\:{tangent} \\ $$$${is}\:{always}\:\mathrm{6}. \\ $$
Commented by mr W last updated on 17/Jul/21
Commented by mr W last updated on 17/Jul/21
method 2:  generally  OA^2 =OP×OQ=3×12=36  ⇒OA=6  see Q137946
$${method}\:\mathrm{2}: \\ $$$${generally} \\ $$$${OA}^{\mathrm{2}} ={OP}×{OQ}=\mathrm{3}×\mathrm{12}=\mathrm{36} \\ $$$$\Rightarrow{OA}=\mathrm{6} \\ $$$${see}\:{Q}\mathrm{137946} \\ $$
Commented by gsk2684 last updated on 18/Jul/21
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *