Question Number 91946 by Rio Michael last updated on 03/May/20
$$\mathrm{a}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{a}\:\mathrm{point}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{3}{h}\:\mathrm{metres}\:\mathrm{above}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{play}\:\mathrm{ground}.\:\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{projectile}\:\mathrm{makes}\:\mathrm{an}\:\mathrm{angle}\:\alpha\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}.\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{th}\:\mathrm{greatest} \\ $$$$\mathrm{height}\:\mathrm{reached}\:\mathrm{above}\:\mathrm{the}\:\mathrm{point}\:\mathrm{lc}\:\mathrm{projection}\:\mathrm{is}\:{h}\:\mathrm{metres},\:\mathrm{then}\:\mathrm{the}\:\mathrm{horizontal} \\ $$$$\mathrm{distance}\:\mathrm{travelled}\:\mathrm{by}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{before}\:\mathrm{striking}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{6}{h}\:\mathrm{cot}\alpha\:\mathrm{metres}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{vertical}\:\mathrm{and}\:\mathrm{horizontal}\:\mathrm{component}\:\mathrm{of}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{just} \\ $$$$\mathrm{before}\:\mathrm{it}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground}. \\ $$
Commented by mr W last updated on 04/May/20
$${apply}\:{methods}\:{as}\:{in}\:{Q}\mathrm{91655} \\ $$
Commented by Rio Michael last updated on 04/May/20
$$\mathrm{oh}\:\mathrm{sir}\:\mathrm{am}\:\mathrm{sorry}\:\mathrm{i}\:\mathrm{will}\:\mathrm{fix}\:\mathrm{that}\:\mathrm{next}\:\mathrm{time}.\:\mathrm{and}\:\mathrm{thanks} \\ $$
Commented by Rio Michael last updated on 04/May/20
$$\mathrm{sir}\:\mathrm{in}\:\mathrm{this}\:\mathrm{question},\:\mathrm{should}\:\mathrm{i}\:\mathrm{assume} \\ $$$$\mathrm{the}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{is}\:{u},\:\mathrm{and}\:\mathrm{apply}\:\mathrm{that}\:\mathrm{method}? \\ $$$$\mathrm{It}\:\mathrm{seems}\:\mathrm{it}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{hiegt}\:\mathrm{reason}\:\mathrm{why}\:\mathrm{applying}\:\mathrm{the} \\ $$$$\mathrm{parabolic}\:\mathrm{property}\:\mathrm{method}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{work}. \\ $$
Answered by mr W last updated on 04/May/20
$$\boldsymbol{{Method}}\:\boldsymbol{{I}} \\ $$
Commented by Rio Michael last updated on 04/May/20
$$\mathrm{sir}\:\mathrm{i}\:\mathrm{have}\:\mathrm{some}\:\mathrm{questions}\:\mathrm{about}\:\mathrm{this}\:\mathrm{method}\:\mathrm{of}\:\mathrm{yours}. \\ $$$$−\:\mathrm{do}\:\mathrm{you}\:\mathrm{assume}\:\mathrm{that}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{vertex}\: \\ $$$$\mathrm{that}\:\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:{h}\:\mathrm{on}\:\mathrm{your}\:\mathrm{diagram}?\:\mathrm{or}\:\mathrm{at}\:\mathrm{O}? \\ $$$$−\:\mathrm{also}\:\mathrm{when}\:\mathrm{using}\:\mathrm{your}\:\mathrm{expression}\:\frac{{y}_{\mathrm{1}} }{{y}_{\mathrm{2}} }\:=\:\left(\frac{{x}_{\mathrm{1}} }{{x}_{\mathrm{2}} }\right)^{\mathrm{2}} \:\mathrm{how}\:\mathrm{do}\: \\ $$$$\mathrm{you}\:\mathrm{choose}\:\mathrm{your}\:\mathrm{points}?\:\mathrm{that}\:\mathrm{is}\:\mathrm{your}\:\mathrm{coordinates}\:\left({x}_{\mathrm{1}} {y}_{\mathrm{1}} \right)\:\mathrm{and} \\ $$$$\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right)? \\ $$
Commented by mr W last updated on 04/May/20
Commented by mr W last updated on 04/May/20
$${the}\:{path}\:{of}\:{the}\:{particle}\:{is}\:{ABCD}. \\ $$$${B}\:{is}\:{the}\:{highest}\:{point}.\:{the}\:{parabola} \\ $$$${is}\:{symmetric}\:{about}\:{B}.\:{we}\:{can}\:{image} \\ $$$${the}\:{particle}\:{starts}\:{from}\:{O}.\:{OA}\:{is} \\ $$$${the}\:{mirror}\:{image}\:{of}\:\:{CD}. \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}{h}}{\frac{{AC}}{\mathrm{2}}} \\ $$$$\Rightarrow\frac{{AC}}{\mathrm{2}}=\mathrm{2}{h}\:\mathrm{cot}\:\alpha \\ $$$$\frac{\mathrm{3}{h}+{h}}{{h}}=\left(\frac{{OB}'}{{A}'{B}'}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$${OB}'=\mathrm{2}{A}'{B}'={AC}=\mathrm{4}{h}\:\mathrm{cot}\:\alpha={B}'{D} \\ $$$${A}'{D}={A}'{B}'+{B}'{D}=\frac{{AC}}{\mathrm{2}}+{B}'{D} \\ $$$${A}'{D}=\mathrm{2}{h}\:\mathrm{cot}\:\alpha+\mathrm{4}{h}\:\mathrm{cot}\:\alpha=\mathrm{6}{h}\:\mathrm{cot}\:\alpha \\ $$$$\Rightarrow{proved} \\ $$$$ \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{2}\left(\mathrm{3}{h}+{h}\right)}{{B}'{D}}=\frac{\mathrm{8}{h}}{\mathrm{4}{h}\:\mathrm{cot}\:\alpha}=\mathrm{2}\:\mathrm{tan}\:\alpha \\ $$$${u}_{{Dy}} =\sqrt{\mathrm{2}{g}\left({h}+\mathrm{3}{h}\right)}=\mathrm{2}\sqrt{\mathrm{2}{gh}} \\ $$$${u}_{{Dx}} =\frac{{v}_{{Dx}} }{\mathrm{tan}\:\beta}=\frac{\mathrm{2}\sqrt{\mathrm{2}{gh}}}{\mathrm{2}\:\mathrm{tan}\:\alpha}=\mathrm{cot}\:\alpha\:\sqrt{\mathrm{2}{gh}} \\ $$
Commented by mr W last updated on 04/May/20
Commented by Rio Michael last updated on 04/May/20
$$\mathrm{thanks}\:\mathrm{again}\:\mathrm{sir} \\ $$
Commented by Tawa11 last updated on 06/Nov/21
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 04/May/20
$$\boldsymbol{{Method}}\:\boldsymbol{{II}} \\ $$
Commented by mr W last updated on 04/May/20
Commented by mr W last updated on 04/May/20
$${x}={u}\:\mathrm{cos}\:\alpha\:{t} \\ $$$${y}={u}\:\mathrm{sin}\:\alpha\:{t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${max}.\:{hight}\:{at}\:{t}={t}_{\mathrm{1}} : \\ $$$${u}\:\mathrm{sin}\:\alpha−{gt}_{\mathrm{1}} =\mathrm{0}\:\Rightarrow{t}_{\mathrm{1}} =\frac{{u}\:\mathrm{sin}\:\alpha}{{g}} \\ $$$${y}_{{B}} ={u}\:\mathrm{sin}\:\alpha\:{t}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}{gt}_{\mathrm{1}} ^{\mathrm{2}} ={h} \\ $$$$\left({u}\:\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\mathrm{2}}{g}×\frac{{u}\:\mathrm{sin}\:\alpha}{{g}}\right)\frac{{u}\:\mathrm{sin}\:\alpha}{{g}}={h} \\ $$$$\Rightarrow{u}\:\mathrm{sin}\:\alpha=\sqrt{\mathrm{2}{gh}}\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${ball}\:{hits}\:{the}\:{ground}\:{at}\:{t}={t}_{\mathrm{2}} : \\ $$$${y}_{{D}} ={u}\:\mathrm{sin}\:\alpha\:{t}_{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{gt}_{\mathrm{2}} ^{\mathrm{2}} =−\mathrm{3}{h} \\ $$$${gt}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}{gh}}{t}_{\mathrm{2}} −\mathrm{6}{h}=\mathrm{0} \\ $$$$\Rightarrow{t}_{\mathrm{2}} =\mathrm{3}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\: \\ $$$${x}_{{D}} ={u}\:\mathrm{cos}\:\alpha\:{t}_{\mathrm{2}} =\mathrm{3}\sqrt{\frac{\mathrm{2}{h}}{{g}}}\:{u}\:\mathrm{cos}\:\alpha \\ $$$$\Rightarrow{u}\:\mathrm{cos}\:\alpha=\frac{{x}_{{D}} }{\mathrm{3}\sqrt{\frac{\mathrm{2}{h}}{{g}}}}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{6}{h}}{{x}_{{D}} } \\ $$$$\Rightarrow{x}_{{D}} =\mathrm{6}{h}\:\mathrm{cot}\:\alpha\:\:\Rightarrow{proved} \\ $$$$ \\ $$$${u}_{{Dx}} ={u}\:\mathrm{cos}\:\alpha=\frac{\mathrm{6}{h}\:\mathrm{cot}\:\alpha}{\mathrm{3}\sqrt{\frac{\mathrm{2}{h}}{{g}}}}=\mathrm{cot}\:\alpha\:\sqrt{\mathrm{2}{gh}} \\ $$$${u}_{{Dy}} ={u}\:\mathrm{sin}\:\alpha−{gt}_{\mathrm{2}} =\sqrt{\mathrm{2}{gh}}−\mathrm{3}\sqrt{\mathrm{2}{gh}}=−\mathrm{2}\sqrt{\mathrm{2}{gh}} \\ $$
Commented by mr W last updated on 04/May/20
$${the}\:{same}\:{result}\:{as}\:{with}\:{method}\:{I}. \\ $$
Commented by Rio Michael last updated on 04/May/20
$$\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$