Menu Close

A-particle-is-projected-with-velocity-2-gh-so-that-it-just-clears-two-walls-of-equal-heigh-h-in-the-t-1-and-t-2-respectively-The-two-walls-are-at-a-distance-of-2h-from-each-other-If-t




Question Number 154549 by peter frank last updated on 19/Sep/21
A particle is projected  with velocity  2(√(gh))   so that  it just clears two  walls of equal heigh(h)  in the  t_1  and t_(2 )  respectively.The two  walls are at a distance of  2h  from  each other.If time passing   between the two walls is 2(√(h/g))  show that (i) angle projected 60^°                 (ii)t_1 +t_2 =2(√((3h)/g))
Aparticleisprojectedwithvelocity2ghsothatitjustclearstwowallsofequalheigh(h)inthet1andt2respectively.Thetwowallsareatadistanceof2hfromeachother.Iftimepassingbetweenthetwowallsis2hgshowthat(i)angleprojected60°(ii)t1+t2=23hg
Commented by Tawa11 last updated on 21/Sep/21
nice sir
nicesir
Answered by ARUNG_Brandon_MBU last updated on 19/Sep/21
(i)For horizontal motion between both walls;   x=v_x t. But x=2h, v_x =2(√(gh))cosϑ, t=2(√(h/g))  ⇒2h=(2(√(gh))cosϑ)(2(√(h/g)))  ⇒(1/2)=cosϑ⇒ϑ=60°
(i)Forhorizontalmotionbetweenbothwalls;x=vxt.Butx=2h,vx=2ghcosϑ,t=2hg2h=(2ghcosϑ)(2hg)12=cosϑϑ=60°
Commented by peter frank last updated on 20/Sep/21
thanks
thanks
Answered by ARUNG_Brandon_MBU last updated on 19/Sep/21
(ii) For vertical motion:  y=ut+(1/2)at^2 , y=h, u=2(√(gh))sin60°=(√(3gh)), a=−g  ⇒h=(√(3gh))t−(1/2)gt^2 ⇒gt^2 −2(√(3gh))t+h=0  t=((2(√(3gh))±(√(12gh−4gh)))/(2g))=((2(√(3gh))±2(√(2gh)))/(2g))  t_1 =(√((3h)/g))+(√((2h)/g)), t_2 =(√((3h)/g))−(√((2h)/g))  t_1 +t_2 =2(√((3h)/g))
(ii)Forverticalmotion:y=ut+12at2,y=h,u=2ghsin60°=3gh,a=gh=3ght12gt2gt223ght+h=0t=23gh±12gh4gh2g=23gh±22gh2gt1=3hg+2hg,t2=3hg2hgt1+t2=23hg
Answered by peter frank last updated on 20/Sep/21
Answered by peter frank last updated on 20/Sep/21
x−direction  x_1 =v_o cos θt_1   x_2 =v_o cos θt_2   v_o =2(√(gh))  x_2 −x_1 =2h      (t_2 −t_1 )=2(√(h/g))  v_o cos θ(t_2 −t_1 )=2h  cosθ=((2h)/(v_o (t_2 −t_1 )))  =(1/2)     θ=  cos^(−1) (1/2)=60^°   also  y−direction  y=v_o sin θt_1 −(1/2)gt_1 ^2   y=v_o sin θt_2 −(1/2)gt_2 ^2   v_o sin θt_1 −(1/2)gt_1 ^2 =v_o sin θt_2 −(1/2)gt_2 ^2   2(√(gh)) sin θ(t_2 −t_1 )=(1/2)g(t_2 ^2 −t_1 ^2 )  2(√(gh)) sin θ=(1/2)g(t_2 +t_1 )   [θ=60]  t_2 +t_1 =((4(√(gh)))/g).((√3)/2)=  t_2 +t_1 =2(√(((3h)/g) ))
xdirectionx1=vocosθt1x2=vocosθt2vo=2ghx2x1=2h(t2t1)=2hgvocosθ(t2t1)=2hcosθ=2hvo(t2t1)=12θ=cos112=60°alsoydirectiony=vosinθt112gt12y=vosinθt212gt22vosinθt112gt12=vosinθt212gt222ghsinθ(t2t1)=12g(t22t12)2ghsinθ=12g(t2+t1)[θ=60]t2+t1=4ghg.32=t2+t1=23hg

Leave a Reply

Your email address will not be published. Required fields are marked *