Menu Close

A-particle-moves-in-a-linear-scare-such-that-acceleration-after-t-seconds-is-a-ms-2-where-a-2t-2-t-If-its-initial-velocity-was-3ms-1-find-an-expression-for-S-the-distance-in-meters-travele




Question Number 47967 by Rio Michael last updated on 17/Nov/18
A particle moves in a linear scare such that acceleration  after t seconds is a ms^(−2)  where a= 2t^2 + t.If its initial   velocity was 3ms^(−1)  find an expression for S,the distance in meters  traveled from start t seconds.
Aparticlemovesinalinearscaresuchthataccelerationaftertsecondsisams2wherea=2t2+t.Ifitsinitialvelocitywas3ms1findanexpressionforS,thedistanceinmeterstraveledfromstarttseconds.
Answered by ajfour last updated on 17/Nov/18
  a= (dv/dt) = 2t^2 +t  ⇒   ∫_3 ^(  v) dv = ∫_0 ^( t) (2t^2 +t)dt  ⇒  v =(dx/dt) =  (2/3)t^3 +(t^2 /2)+3  ⇒ ∫_x_9  ^(  x) dx = ∫_0 ^(  t) ((2/3)t^3 +(t^2 /2)+3)dt   s = x−x_0  = t((t^3 /6)+(t^2 /6)+3)  ⇒     s = (t/6)(t^3 +t^2 +18) .
a=dvdt=2t2+t3vdv=0t(2t2+t)dtv=dxdt=23t3+t22+3x9xdx=0t(23t3+t22+3)dts=xx0=t(t36+t26+3)\boldsymbols=\boldsymbolt6(\boldsymbolt3+\boldsymbolt2+18).
Commented by Rio Michael last updated on 17/Nov/18
please sir i don′t understand the point where   ∫_x_9  ^x dx=∫_0 ^t ((2/3)t^3 +(t^2 /2)+3)dt
pleasesiridontunderstandthepointwherex9xdx=0t(23t3+t22+3)dt
Commented by ajfour last updated on 17/Nov/18
  x is the position coordinate  at time t, x_0  the initial position  coordinate;  s the displacement  is always = △x = x−x_0  .
xisthepositioncoordinateattimet,x0theinitialpositioncoordinate;sthedisplacementisalways=x=xx0.
Commented by Rio Michael last updated on 18/Nov/18
thanks sir
thankssirthankssir

Leave a Reply

Your email address will not be published. Required fields are marked *