Question Number 22304 by Tinkutara last updated on 15/Oct/17

Answered by ajfour last updated on 16/Oct/17
![(d^2 x/dt^2 )=((vdv)/dx)=−(k/x^2 ) ⇒ ∫_0 ^( v) vdv = −∫_a ^( x) ((kdx)/x^2 ) ⇒ (v^2 /2) = +k((1/x)−(1/a)) or v=−(√(2k)) (√((1/x)−(1/a))) ⇒ ∫_a ^( x) (dx/( (√((1/x)−(1/a))))) =−(√(2k)) ∫_0 ^( t) dt time taken to reach x=0 be T ⇒ T=(1/( (√(2k))))∫_0 ^( a) (√((ax)/(a−x))) dx let a−x=y^2 ⇒ dx=−2ydy x=a−y^2 ; x=0 ⇒ y=(√a) and x=a ⇒ y=0 ; then T=(1/( (√(2k))))∫_(√a) ^( 0) ((√(a(a−y^2 )))/y)(−2ydy) =(√((2a)/k))∫_0 ^( (√a)) (√(((√a))^2 −y^2 )) dy =(√((2a)/k)) [(y/2)(√(a−y^2 ))∣_0 ^(√a) +(a/2)sin^(−1) ((y/( (√a))))∣_0 ^(√a) ] T=(√((2a)/k)) ((a/2)×(𝛑/2))=((𝛑a)/2)(√(a/(2k))) .](https://www.tinkutara.com/question/Q22306.png)
Commented by squidward last updated on 16/Oct/17

Commented by Tinkutara last updated on 15/Oct/17

Commented by squidward last updated on 16/Oct/17

Commented by ajfour last updated on 16/Oct/17

Commented by ajfour last updated on 16/Oct/17

Commented by Tinkutara last updated on 25/Nov/17
