Menu Close

A-particle-moves-in-a-straight-line-along-x-axis-At-t-0-it-is-released-from-rest-at-x-a-Acceleration-of-the-particle-varies-as-d-2-x-dt-2-k-x-2-where-k-is-a-positive-constant-Time-r




Question Number 22304 by Tinkutara last updated on 15/Oct/17
A particle moves in a straight line along  x-axis. At t = 0, it is released from  rest at x = a. Acceleration of the  particle varies as (d^2 x/dt^2 ) = −(k/x^2 ) , where k  is a positive constant.  Time required by particle to reach the  origin will be
Aparticlemovesinastraightlinealongxaxis.Att=0,itisreleasedfromrestatx=a.Accelerationoftheparticlevariesasd2xdt2=kx2,wherekisapositiveconstant.Timerequiredbyparticletoreachtheoriginwillbe
Answered by ajfour last updated on 16/Oct/17
            (d^2 x/dt^2 )=((vdv)/dx)=−(k/x^2 )  ⇒       ∫_0 ^(  v) vdv = −∫_a ^(  x)  ((kdx)/x^2 )  ⇒                (v^2 /2) = +k((1/x)−(1/a))  or      v=−(√(2k)) (√((1/x)−(1/a)))   ⇒        ∫_a ^(  x) (dx/( (√((1/x)−(1/a))))) =−(√(2k)) ∫_0 ^( t) dt  time taken to reach x=0 be T  ⇒   T=(1/( (√(2k))))∫_0 ^(  a) (√((ax)/(a−x))) dx  let  a−x=y^2     ⇒  dx=−2ydy      x=a−y^2   ; x=0 ⇒ y=(√a)   and  x=a ⇒ y=0 ; then          T=(1/( (√(2k))))∫_(√a) ^(  0) ((√(a(a−y^2 )))/y)(−2ydy)    =(√((2a)/k))∫_0 ^(  (√a)) (√(((√a))^2 −y^2 )) dy   =(√((2a)/k)) [(y/2)(√(a−y^2 ))∣_0 ^(√a) +(a/2)sin^(−1) ((y/( (√a))))∣_0 ^(√a) ]  T=(√((2a)/k)) ((a/2)×(𝛑/2))=((𝛑a)/2)(√(a/(2k))) .
d2xdt2=vdvdx=kx20vvdv=axkdxx2v22=+k(1x1a)orv=2k1x1aaxdx1x1a=2k0tdttimetakentoreachx=0beTT=12k0aaxaxdxletax=y2dx=2ydyx=ay2;x=0y=aandx=ay=0;thenT=12ka0a(ay2)y(2ydy)=2ak0a(a)2y2dy=2ak[y2ay20a+a2sin1(ya)0a]T=2ak(a2×π2)=πa2a2k.
Commented by squidward last updated on 16/Oct/17
4th line is incorrect too
4thlineisincorrecttoo
Commented by Tinkutara last updated on 15/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by squidward last updated on 16/Oct/17
your 3rd line is wrong and how the hell  did you go from 3rd line to 4th?
your3rdlineiswrongandhowthehelldidyougofrom3rdlineto4th?
Commented by ajfour last updated on 16/Oct/17
is it fine now ?
isitfinenow?
Commented by ajfour last updated on 16/Oct/17
No. after being released at x=a  particle develops negative velocity.   v=±(√(2k)) (√((1/x)−(1/a)))   so we choose the −ve one .
No.afterbeingreleasedatx=aparticledevelopsnegativevelocity.v=±2k1x1asowechoosetheveone.
Commented by Tinkutara last updated on 25/Nov/17
Why we chose −ve one?
Whywechoseveone?Whywechoseveone?

Leave a Reply

Your email address will not be published. Required fields are marked *