Menu Close

A-particle-moves-in-a-straight-line-along-x-axis-At-t-0-it-passes-origin-with-some-velocity-towards-positive-x-axis-and-with-an-acceleration-a-which-is-given-as-a-Kx-where-x-is-in-metre-and-K




Question Number 24520 by Tinkutara last updated on 19/Nov/17
A particle moves in a straight line along  x-axis. At t = 0 it passes origin with  some velocity towards positive x-axis  and with an acceleration a which is  given as, a = − Kx, where x is in metre  and K is a positive constant. The time  at which its velocity becomes half of its  value at t = 0 for the first time, is
Aparticlemovesinastraightlinealongxaxis.Att=0itpassesoriginwithsomevelocitytowardspositivexaxisandwithanaccelerationawhichisgivenas,a=Kx,wherexisinmetreandKisapositiveconstant.Thetimeatwhichitsvelocitybecomeshalfofitsvalueatt=0forthefirsttime,is
Answered by mrW1 last updated on 19/Nov/17
a=(dv/dt)=v(dv/dx)=−Kx  vdv=−Kxdx  (v^2 /2)=−((Kx^2 )/2)+(C/2)  at x=0, t=0, v=v_0   ⇒C=v_0 ^2   ⇒v^2 =v_0 ^2 −Kx^2   ⇒v=(√(v_0 ^2 −Kx^2 ))  ⇒(dx/dt)=(√(v_0 ^2 −Kx^2 ))  ⇒(dx/( (√(v_0 ^2 −Kx^2 ))))=dt  ⇒((d(√K)x)/( (√(v_0 ^2 −((√K)x)^2 ))))=(√K)dt  sin^(−1) (((√K)x)/v_0 )+C=(√K)t  at t=0, x=0  ⇒C=0  ⇒t=(1/( (√K))) sin^(−1) (((√K)x)/v_0 )  ⇒x=(v_0 /( (√K))) sin ((√K)t)  ⇒v=v_0 cos ((√K)t)    for v=(v_0 /2)  (v_0 ^2 /4)=v_0 ^2 −Kx^2   ⇒x=(((√3)v_0 )/(2(√K)))  ⇒t=(1/( (√K))) sin^(−1) (((√K)/v_0 )×(((√3)v_0 )/(2(√K))))  ⇒t=(1/( (√K))) sin^(−1) (((√3)/2))=(π/(3(√K)))    or  (v_0 /2)=v_0 cos ((√K)t)  ⇒(√K)t=(π/3)  ⇒t=(π/(3(√K)))
a=dvdt=vdvdx=Kxvdv=Kxdxv22=Kx22+C2atx=0,t=0,v=v0C=v02v2=v02Kx2v=v02Kx2dxdt=v02Kx2dxv02Kx2=dtdKxv02(Kx)2=Kdtsin1Kxv0+C=Ktatt=0,x=0C=0t=1Ksin1Kxv0x=v0Ksin(Kt)v=v0cos(Kt)forv=v02v024=v02Kx2x=3v02Kt=1Ksin1(Kv0×3v02K)t=1Ksin1(32)=π3Korv02=v0cos(Kt)Kt=π3t=π3K
Commented by Tinkutara last updated on 20/Nov/17
Thank you very much Sir!  That′s I want because I had not  studied SHM.
ThankyouverymuchSir!ThatsIwantbecauseIhadnotstudiedSHM.
Answered by ajfour last updated on 20/Nov/17
a=−ω^2 x   for  S.H.M. along x.  lets take      x=Asin (ωt+φ)  as x=0  at  t=0  ⇒   φ = 0, π  v=ωAcos (ωt+φ)  as v>0 at t=0   ⇒   φ=0 and ≠π  so     x=Asin 𝛚t  and v=ωAcos ωt  v_0 =ωA     so  (v_0 /2)=((ωA)/2)     v_1 = ((ωA)/2) =ωAcos ωt_1   ⇒ cos ωt_1 =(1/2)  or   t_1 =(π/(3ω)) = (π/(3(√K))) .
a=ω2xforS.H.M.alongx.letstakex=Asin(ωt+ϕ)asx=0att=0ϕ=0,πv=ωAcos(ωt+ϕ)asv>0att=0ϕ=0andπsox=Asinωtandv=ωAcosωtv0=ωAsov02=ωA2v1=ωA2=ωAcosωt1cosωt1=12ort1=π3ω=π3K.
Commented by Tinkutara last updated on 20/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by Tinkutara last updated on 20/Nov/17
Using SHM, I will need it later.
UsingSHM,Iwillneeditlater.

Leave a Reply

Your email address will not be published. Required fields are marked *