Menu Close

A-particle-of-mass-4kg-was-at-rest-a-a-point-of-position-vector-i-4j-A-force-F-was-applied-to-it-and-it-moved-at-a-velocity-of-3i-7j-ms-1-after-a-time-of-5seconds-Find-a-the-magnitude-o




Question Number 47675 by Rio Michael last updated on 13/Nov/18
A particle of mass 4kg was at rest a a point of position vector  i +4j. A force F was applied to it and it moved at a velocity  of (3i + 7j)ms^(−1)    after a time of  5seconds. Find   a) the magnitude of F  b) The speed at which it moves,Hence,  c) The distance it covered.
Aparticleofmass4kgwasatrestaapointofpositionvectori+4j.AforceFwasappliedtoitanditmovedatavelocityof(3i+7j)ms1afteratimeof5seconds.Finda)themagnitudeofFb)Thespeedatwhichitmoves,Hence,c)Thedistanceitcovered.
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18
a)force=m(((v_2 ^→ −v_1 ^→ )/t))=4×(((3i+7j)/5))  magndtude of force=(√((((12)/5))^2 +(((28)/5))^2 )) =6.09N  c)distance s  s=(1/2)at^2   =(1/2)×((6.09)/4)×5^2 =19.03  b)average speed=((19.03)/5)=3.81m/sec
a)force=m(v2v1t)=4×(3i+7j5)magndtudeofforce=(125)2+(285)2=6.09Nc)distancess=12at2=12×6.094×52=19.03b)averagespeed=19.035=3.81m/sec
Answered by bshahid010@gmail.com last updated on 13/Nov/18
Use F=m((Δv)/(Δt))  where Δv=(√(3^2 +7^2 ))=(√(58))  F=4((√(58))/5)  then find a by a=(F/m)  and use second equation of motion
UseF=mΔvΔtwhereΔv=32+72=58F=4585thenfindabya=Fmandusesecondequationofmotion
Commented by Rio Michael last updated on 13/Nov/18
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *