A-particle-of-mass-m-moves-under-the-central-repulsive-force-mb-r-3-and-is-initially-moving-at-a-distance-a-from-the-origin-of-a-force-with-velocity-v-at-right-angle-to-a-show-that- Tinku Tara June 4, 2023 Mechanics 0 Comments FacebookTweetPin Question Number 191868 by Spillover last updated on 02/May/23 Aparticleofmassmmovesunderthecentralrepulsiveforcembr3andisinitiallymovingatadistance′a′fromtheoriginofaforcewithvelocity′v′atrightangleto′a′.showthatrcospθ=awherep=ba2v2+1. Answered by mr W last updated on 03/May/23 Commented by Spillover last updated on 29/Jun/23 thanksforthesketch Answered by Spillover last updated on 15/Jul/24 ThepresenceofthecentralforceimpliesthattheangularmomentumLisconservedF(r)=mbr3L=mr2θGiveninitialconditioninitialdistancefromtheoriginr=ainitialvelocityvperpendiculartoaisgivenL=mavTotalenergyoftheparticleisconservedconsistK.EandeffectiveP.E[Veff(r)]Veff(r)=L22mr2+mb2r2L=mavVeff(r)=L22mr2+mb2r2Veff(r)=(mav)22mr2+mb2r2=m(a2v2+b)2r2fromRadialequationofthemotiondθdt=L2mr2=avr2Theradialequationofthemotionfromeffectivepotentialmd2rdt2=md2θdt2=L2mr3+mbr3d2rdt2=a2v2+br3fromdθdt=L2mr2=avr2u=1rdudθ=−1rdrdθd2rdt2=ddθ(drdθ.dθdt)d2rdt2=ddθ(drdθ).(dθdt)2+drdθ.d2θdt2butd2θdt2=0(d2rdθ2).(avr2)2solved.eforud2θdt2+u=a2v2+ba2v2u3d2θdt2+u=(1+ba2v2)u3giventheboundaryconditionu=1ratθ=0u(θ)=1acos(pθ)wherep=1+ba2v2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: e-w-w-n-1-dw-n-N-Next Next post: Question-191873 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.