Menu Close

A-particle-of-mass-m-moves-under-the-central-repulsive-force-mb-r-3-and-is-initially-moving-at-a-distance-a-from-the-origin-of-a-force-with-velocity-v-at-right-angle-to-a-show-that-




Question Number 191868 by Spillover last updated on 02/May/23
A particle of mass m moves under the central  repulsive force ((mb)/r^3 )  and is initially moving  at a distance ′a′  from the origin of  a force  with velocity  ′v′ at right angle to  ′a′.  show that          rcos pθ=a  where p =(b/(a^2 v^2 ))+1.
Aparticleofmassmmovesunderthecentralrepulsiveforcembr3andisinitiallymovingatadistanceafromtheoriginofaforcewithvelocityvatrightangletoa.showthatrcospθ=awherep=ba2v2+1.
Answered by mr W last updated on 03/May/23
Commented by Spillover last updated on 29/Jun/23
thanks for the sketch
thanksforthesketch
Answered by Spillover last updated on 15/Jul/24
The presence of the central force implies that  the angular momentum L is conserved  F(r)=((mb)/r^3 )             L=mr^2 θ  Given initial condition  ■ initial distance from the origin r=a  ■ initial velocity v perpendicular to a is given                 L=mav  Total energy of the particle is conserved consist  K.E and effective P.E[V_(eff) (r)]  V_(eff) (r)=(L^2 /(2mr^2 ))+((mb)/(2r^2 ))  L=mav  V_(eff) (r)=(L^2 /(2mr^2 ))+((mb)/(2r^2 ))  V_(eff) (r)=(((mav)^2 )/(2mr^2 ))+((mb)/(2r^2 ))=((m(a^2 v^2 +b))/(2r^2 ))  from Radial equation of the motion  (dθ/dt)=(L^2 /(mr^2 ))=((av)/r^2 )  The radial equation of the motion from  effective potential  m(d^2 r/dt^2 )=m(d^2 θ/dt^2 )=(L^2 /(mr^3 ))+((mb)/r^3 )  (d^2 r/dt^2 )=((a^2 v^2 +b)/r^3 )  from                   (dθ/dt)=(L^2 /(mr^2 ))=((av)/r^2 )  u=(1/r)                     (du/dθ)=−(1/r)(dr/dθ)  (d^2 r/dt^2 )=(d/dθ)((dr/dθ).(dθ/dt))  (d^2 r/dt^2 )=(d/dθ)((dr/dθ)).((dθ/dt))^2 +(dr/dθ).(d^2 θ/dt^2 )  but          (d^2 θ/dt^2 )=0  ((d^2 r/dθ^2 )).(((av)/r^2 ))^2   solve d.e for u  (d^2 θ/dt^2 )+u=((a^2 v^2 +b)/(a^2 v^2 ))u^3   (d^2 θ/dt^2 )+u=(1+(b/(a^2 v^2 )))u^3   given the boundary condition  u=(1/r)     at θ=0  u(θ)=(1/a)cos (pθ)   where p=1+(b/(a^2 v^2 ))
ThepresenceofthecentralforceimpliesthattheangularmomentumLisconservedF(r)=mbr3L=mr2θGiveninitialcondition◼initialdistancefromtheoriginr=a◼initialvelocityvperpendiculartoaisgivenL=mavTotalenergyoftheparticleisconservedconsistK.EandeffectiveP.E[Veff(r)]Veff(r)=L22mr2+mb2r2L=mavVeff(r)=L22mr2+mb2r2Veff(r)=(mav)22mr2+mb2r2=m(a2v2+b)2r2fromRadialequationofthemotiondθdt=L2mr2=avr2Theradialequationofthemotionfromeffectivepotentialmd2rdt2=md2θdt2=L2mr3+mbr3d2rdt2=a2v2+br3fromdθdt=L2mr2=avr2u=1rdudθ=1rdrdθd2rdt2=ddθ(drdθ.dθdt)d2rdt2=ddθ(drdθ).(dθdt)2+drdθ.d2θdt2butd2θdt2=0(d2rdθ2).(avr2)2solved.eforud2θdt2+u=a2v2+ba2v2u3d2θdt2+u=(1+ba2v2)u3giventheboundaryconditionu=1ratθ=0u(θ)=1acos(pθ)wherep=1+ba2v2

Leave a Reply

Your email address will not be published. Required fields are marked *