Menu Close

A-particle-of-mass-m-moving-with-speed-u-collides-perfectly-inelastically-with-a-sphere-of-radius-R-and-same-mass-at-rest-at-an-impact-parameter-d-Find-a-Angle-between-their-final-velocities-b-




Question Number 25091 by Tinkutara last updated on 03/Dec/17
A particle of mass m moving with  speed u collides perfectly inelastically  with a sphere of radius R and same  mass, at rest, at an impact parameter  d. Find  (a) Angle between their final velocities  (b) Magnitude of their final  velocities
AparticleofmassmmovingwithspeeducollidesperfectlyinelasticallywithasphereofradiusRandsamemass,atrest,atanimpactparameterd.Find(a)Anglebetweentheirfinalvelocities(b)Magnitudeoftheirfinalvelocities
Answered by ajfour last updated on 03/Dec/17
Commented by ajfour last updated on 04/Dec/17
conserving linear momentum  mu=2mv+mωRsin θ  and sin θ=d/R  , so    2v+ωd=u   ...(i)  conserving angular momentum  about ground point G:  mu(R+d)=mvR+(2/5)mR^2 ω+     m(v+ωRsin θ)(R+d)+mω(Rcos θ)^2                                                   ....(ii)  and  as  (Rcos θ)^2 =(R+d)(R−d),  also Rsin θ=d  ⇒  u(R+d)=vR+(2/5)ωR^2 +               (v+ωd)(R+d)+ω(R^2 −d^2 )  from (i):    v+ωd=u−v  , so     vd=ω((7/5)R^2 −d^2 )  and from (i):      2v+𝛚d=u  ⇒   2ω((7/5)R^2 −d^2 )+ωd^2 =ud    ω=((ud)/((((14)/5)R^2 +d^2 ))) ; v=((u((7/5)R^2 −d^2 ))/((((14)/5)R^2 +d^2 )))  tan φ=((ωRcos θ)/(v+ωd)) =(d(√(R^2 −d^2 ))/((vd/ω)+d^2 ))          tan 𝛗=((5d(√(R^2 −d^2 )))/(7R^2 )) .  V=((ωRcos θ)/(sin φ)) =ω[((√(R^2 −d^2 ))/(sin φ))] .
conservinglinearmomentummu=2mv+mωRsinθandsinθ=d/R,so2v+ωd=u(i)conservingangularmomentumaboutgroundpointG:mu(R+d)=mvR+25mR2ω+m(v+ωRsinθ)(R+d)+mω(Rcosθ)2.(ii)andas(Rcosθ)2=(R+d)(Rd),alsoRsinθ=du(R+d)=vR+25ωR2+(v+ωd)(R+d)+ω(R2d2)from(i):v+ωd=uv,sovd=ω(75R2d2)andfrom(i):2\boldsymbolv+\boldsymbolωd=\boldsymbolu2ω(75R2d2)+ωd2=udω=ud(145R2+d2);\boldsymbolv=\boldsymbolu(75\boldsymbolR2d2)(145R2+d2)tanϕ=ωRcosθv+ωd=dR2d2(vd/ω)+d2tan\boldsymbolϕ=5\boldsymbold\boldsymbolR2\boldsymbold27\boldsymbolR2.V=ωRcosθsinϕ=ω[R2d2sinϕ].
Commented by ajfour last updated on 03/Dec/17
∠ between their final velocities  is  𝛗 .  final velocity of sphere v.  Final velocity of particle is V.
betweentheirfinalvelocitiesis\boldsymbolϕ.finalvelocityofsphere\boldsymbolv.Finalvelocityofparticleis\boldsymbolV.
Commented by Tinkutara last updated on 05/Dec/17
Answer is:  v_1 =((ud)/R),v_2 =−v_3 =((u(√(R^2 −d^2 )))/(2R))
Answeris:v1=udR,v2=v3=uR2d22R
Commented by ajfour last updated on 05/Dec/17
which answer is correct for  d=0 , and even d=R ? Please  check or i think i have   misunderstood the question.  mrW sir can help if he finds  time and notices my request.
whichansweriscorrectford=0,andevend=R?Pleasecheckorithinkihavemisunderstoodthequestion.mrWsircanhelpifhefindstimeandnoticesmyrequest.

Leave a Reply

Your email address will not be published. Required fields are marked *