Menu Close

A-particle-P-is-moving-on-a-circle-under-the-action-of-only-one-force-acting-always-towards-fixed-point-O-on-the-circumference-Find-ratio-of-d-2-dt-2-and-d-dt-2-




Question Number 22145 by Tinkutara last updated on 11/Oct/17
A particle P is moving on a circle under  the action of only one force acting  always towards fixed point O on the  circumference. Find ratio of (d^2 φ/dt^2 ) and  ((dφ/dt))^2 .
AparticlePismovingonacircleundertheactionofonlyoneforceactingalwaystowardsfixedpointOonthecircumference.Findratioofd2ϕdt2and(dϕdt)2.
Commented by Tinkutara last updated on 11/Oct/17
Commented by sma3l2996 last updated on 12/Oct/17
we have  F^→ =ma^→ ⇔a^→ =−(F/m)u^→  ...(i)  and  OP^(→) =2Rcos(φ)u^→       so v^→ (P)=((dOP^(→) )/dt)=2R[−φ^. sin(φ)u^→ +φ^. cos(φ)k^→ ]=2Rφ^. (−sinφu^→ +cosφk^→ )  and   a^→ (P)=(dv^→ /dt)=2R[φ^(..) (−sinφu^→ +cosφk^→ )+φ^. (−φ^. cosφu^→ −φ^. sinφk^→ −φ^. sinφk^→ −φ^. cosφu^→ )]  so : a^→ =2R[(−φ^(..) sinφ−2φ^. ^2 cosφ)u^→ +(φ^(..) cosφ−2φ^. ^2 sinφ)k^→ ] ...(ii)  we have (i)=(ii)  so   2R(−φ^(..) sinφ−2φ^. ^2 cosφ)=((−F)/m)  and  φ^(..) cosφ−2φ^. ^2 sinφ=0  so   φ^(..) cosφ=2φ^. ^2 sinφ ⇔φ^(..) =2φ^. ^2 tan(φ) ...(3i)  φ^(..) sinφ+2φ^. ^2 cosφ=(F/(2Rm)) ...(4i)  (3i)→(4i)⇒ 2φ^. ^2 tan(φ)sin(φ)+2φ^. ^2 cosφ=(F/(2Rm))  2φ^. ^2 cosφ(((tan(φ)sinφ)/(cosφ))+1)=(F/(2Rm))  2φ^. ^2 cosφ(tan^2 φ+1)=(F/(2Rm))  ((dφ/dt))^2 =φ^. ^2 =(F/(4Rm))cosφ  and φ^(..) =2φ^. ^2 tanφ=2((F/(4Rm))cosφ)tanφ  so :  (d^2 φ/dt^2 )=φ^(..) =(F/(2Rm))sinφ
wehaveF=maa=Fmu(i)andOP=2Rcos(ϕ)usov(P)=dOPdt=2R[ϕ.sin(ϕ)u+ϕ.cos(ϕ)k]=2Rϕ.(sinϕu+cosϕk)anda(P)=dvdt=2R[ϕ..(sinϕu+cosϕk)+ϕ.(ϕ.cosϕuϕ.sinϕkϕ.sinϕkϕ.cosϕu)]so:a=2R[(ϕ..sinϕ2ϕ.2cosϕ)u+(ϕ..cosϕ2ϕ.2sinϕ)k](ii)wehave(i)=(ii)so2R(ϕ..sinϕ2ϕ.2cosϕ)=Fmandϕ..cosϕ2ϕ.2sinϕ=0soϕ..cosϕ=2ϕ.2sinϕϕ..=2ϕ.2tan(ϕ)(3i)ϕ..sinϕ+2ϕ.2cosϕ=F2Rm(4i)(3i)(4i)2ϕ.2tan(ϕ)sin(ϕ)+2ϕ.2cosϕ=F2Rm2ϕ.2cosϕ(tan(ϕ)sinϕcosϕ+1)=F2Rm2ϕ.2cosϕ(tan2ϕ+1)=F2Rm(dϕdt)2=ϕ.2=F4Rmcosϕandϕ..=2ϕ.2tanϕ=2(F4Rmcosϕ)tanϕso:d2ϕdt2=ϕ..=F2Rmsinϕ
Commented by sma3l2996 last updated on 12/Oct/17
Answered by ajfour last updated on 12/Oct/17
Alternate solution:  let the ∠ at C be θ.        θ=2φ  ⇒  ω=(dθ/dt)=2(dφ/dt)  ..(i)      ((dφ/dt))^2 =(ω^2 /4)    ...(a)  α=(dω/dt) =2(d^2 φ/dt^2 )   ⇒   (d^2 φ/dt^2 )=(α/2)    ...(b)  (b)÷(a) will give  ((d^2 φ/dt^2 )/((dφ/dt)^2 )) =((α/2)/(ω^2 /4)) =((2α)/ω^2 )                     =((2m(αr))/(m(ω^2 r))) =((2ma_T )/(ma_r ))       =((2Fsin φ)/(Fcos φ)) = 2tan 𝛗 .
Alternatesolution:lettheatCbeθ.θ=2ϕω=dθdt=2dϕdt..(i)(dϕdt)2=ω24(a)α=dωdt=2d2ϕdt2d2ϕdt2=α2(b)(b)÷(a)willgived2ϕ/dt2(dϕ/dt)2=α/2ω2/4=2αω2=2m(αr)m(ω2r)=2maTmar=2FsinϕFcosϕ=2tanϕ.
Commented by Tinkutara last updated on 12/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *