Menu Close

A-particle-P-moves-on-a-straightline-from-a-fixed-point-O-and-the-distance-x-from-O-after-t-seconds-is-given-as-x-1-4-t-4-3-2-t-2-2t-Find-a-the-velocity-of-P-when-t-2-b-the-acce




Question Number 38365 by Rio Mike last updated on 24/Jun/18
A particle P moves on a straightline  from a fixed point O and the distance  x from O after t seconds is given as   x = (1/(4 )) t^4  − (3/2) t^2  + 2t.  Find:  a) the velocity of P when t = 2,  b) the acceleration of P when t = 2,  c) the time at which the speed P   is Minimum.
AparticlePmovesonastraightlinefromafixedpointOandthedistancexfromOaftertsecondsisgivenasx=14t432t2+2t.Find:a)thevelocityofPwhent=2,b)theaccelerationofPwhent=2,c)thetimeatwhichthespeedPisMinimum.
Answered by MJS last updated on 25/Jun/18
s(t)=(1/4)t^4 −(3/2)t^2 +2t  v(t)=(ds/dt)=t^3 −3t+2 ⇒ v(2)=4  a(t)=(dv/dt)=3t^2 −3 ⇒ a(2)=9  local min(v(t))/max(v(t))=v(x) ⇒ v′(x)=0 ⇒ a(x)=0  v(x)=min(v(t)) ⇒ v′′(x)>0  v(x)=max(v(t)) ⇒ v′′(x)<0  3x^2 −3=0  x^2 =1  x_1 =−1  x_2 =1  v′′(t)=a′(t)=(da/dt)=3t  a′(−1)=−3 <0 ⇒ local max(v(t))=v(−1)=4  a′(1)=3 >0 ⇒ local min(v(t))=v(1)=0
s(t)=14t432t2+2tv(t)=dsdt=t33t+2v(2)=4a(t)=dvdt=3t23a(2)=9localmin(v(t))/max(v(t))=v(x)v(x)=0a(x)=0v(x)=min(v(t))v(x)>0v(x)=max(v(t))v(x)<03x23=0x2=1x1=1x2=1v(t)=a(t)=dadt=3ta(1)=3<0localmax(v(t))=v(1)=4a(1)=3>0localmin(v(t))=v(1)=0
Commented by Rio Mike last updated on 25/Jun/18
perfect!
perfect!

Leave a Reply

Your email address will not be published. Required fields are marked *