Menu Close

A-particle-P-moves-on-a-straightline-from-a-fixed-point-O-and-the-distance-x-from-O-after-t-seconds-is-given-as-x-1-4-t-4-3-2-t-2-2t-Find-a-the-velocity-of-P-when-t-2-b-the-acce




Question Number 38365 by Rio Mike last updated on 24/Jun/18
A particle P moves on a straightline  from a fixed point O and the distance  x from O after t seconds is given as   x = (1/(4 )) t^4  − (3/2) t^2  + 2t.  Find:  a) the velocity of P when t = 2,  b) the acceleration of P when t = 2,  c) the time at which the speed P   is Minimum.
$${A}\:{particle}\:{P}\:{moves}\:{on}\:{a}\:{straightline} \\ $$$${from}\:{a}\:{fixed}\:{point}\:{O}\:{and}\:{the}\:{distance} \\ $$$${x}\:{from}\:{O}\:{after}\:{t}\:{seconds}\:{is}\:{given}\:{as} \\ $$$$\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}\:}\:{t}^{\mathrm{4}} \:−\:\frac{\mathrm{3}}{\mathrm{2}}\:{t}^{\mathrm{2}} \:+\:\mathrm{2}{t}. \\ $$$${Find}: \\ $$$$\left.{a}\right)\:{the}\:{velocity}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}, \\ $$$$\left.{b}\right)\:{the}\:{acceleration}\:{of}\:{P}\:{when}\:{t}\:=\:\mathrm{2}, \\ $$$$\left.{c}\right)\:{the}\:{time}\:{at}\:{which}\:{the}\:{speed}\:{P}\: \\ $$$${is}\:{Minimum}. \\ $$
Answered by MJS last updated on 25/Jun/18
s(t)=(1/4)t^4 −(3/2)t^2 +2t  v(t)=(ds/dt)=t^3 −3t+2 ⇒ v(2)=4  a(t)=(dv/dt)=3t^2 −3 ⇒ a(2)=9  local min(v(t))/max(v(t))=v(x) ⇒ v′(x)=0 ⇒ a(x)=0  v(x)=min(v(t)) ⇒ v′′(x)>0  v(x)=max(v(t)) ⇒ v′′(x)<0  3x^2 −3=0  x^2 =1  x_1 =−1  x_2 =1  v′′(t)=a′(t)=(da/dt)=3t  a′(−1)=−3 <0 ⇒ local max(v(t))=v(−1)=4  a′(1)=3 >0 ⇒ local min(v(t))=v(1)=0
$${s}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{4}}{t}^{\mathrm{4}} −\frac{\mathrm{3}}{\mathrm{2}}{t}^{\mathrm{2}} +\mathrm{2}{t} \\ $$$${v}\left({t}\right)=\frac{{ds}}{{dt}}={t}^{\mathrm{3}} −\mathrm{3}{t}+\mathrm{2}\:\Rightarrow\:{v}\left(\mathrm{2}\right)=\mathrm{4} \\ $$$${a}\left({t}\right)=\frac{{dv}}{{dt}}=\mathrm{3}{t}^{\mathrm{2}} −\mathrm{3}\:\Rightarrow\:{a}\left(\mathrm{2}\right)=\mathrm{9} \\ $$$$\mathrm{local}\:\mathrm{min}\left({v}\left({t}\right)\right)/\mathrm{max}\left({v}\left({t}\right)\right)={v}\left({x}\right)\:\Rightarrow\:{v}'\left({x}\right)=\mathrm{0}\:\Rightarrow\:{a}\left({x}\right)=\mathrm{0} \\ $$$${v}\left({x}\right)=\mathrm{min}\left({v}\left({t}\right)\right)\:\Rightarrow\:{v}''\left({x}\right)>\mathrm{0} \\ $$$${v}\left({x}\right)=\mathrm{max}\left({v}\left({t}\right)\right)\:\Rightarrow\:{v}''\left({x}\right)<\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\mathrm{1} \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =\mathrm{1} \\ $$$${v}''\left({t}\right)={a}'\left({t}\right)=\frac{{da}}{{dt}}=\mathrm{3}{t} \\ $$$${a}'\left(−\mathrm{1}\right)=−\mathrm{3}\:<\mathrm{0}\:\Rightarrow\:\mathrm{local}\:\mathrm{max}\left({v}\left({t}\right)\right)={v}\left(−\mathrm{1}\right)=\mathrm{4} \\ $$$${a}'\left(\mathrm{1}\right)=\mathrm{3}\:>\mathrm{0}\:\Rightarrow\:\mathrm{local}\:\mathrm{min}\left({v}\left({t}\right)\right)={v}\left(\mathrm{1}\right)=\mathrm{0} \\ $$
Commented by Rio Mike last updated on 25/Jun/18
perfect!
$${perfect}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *