Menu Close

A-particle-P-moving-at-constant-angular-velocity-describes-a-part-y-f-At-time-t-0-the-particle-is-at-the-point-with-coordinate-a-pi-2-and-moving-with-a-transverse-acceleration-of-2a-2




Question Number 96761 by Rio Michael last updated on 04/Jun/20
A particle P   moving at constant angular velocity  describes a part y = f(θ). At time t = 0, the particle  is at the point with coordinate (a,(π/2)) and moving with a   transverse acceleration of −2aω^2  sinθ. find the polar equation  of the curve described by this particle.Show that the  radial component of the  acceleration  of P is −aω^2 (1 + cos θ).
$$\mathrm{A}\:\mathrm{particle}\:\mathrm{P}\:\:\:\mathrm{moving}\:\mathrm{at}\:\mathrm{constant}\:\mathrm{angular}\:\mathrm{velocity} \\ $$$$\mathrm{describes}\:\mathrm{a}\:\mathrm{part}\:{y}\:=\:{f}\left(\theta\right).\:\mathrm{At}\:\mathrm{time}\:{t}\:=\:\mathrm{0},\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{with}\:\mathrm{coordinate}\:\left({a},\frac{\pi}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{moving}\:\mathrm{with}\:\mathrm{a}\: \\ $$$$\mathrm{transverse}\:\mathrm{acceleration}\:\mathrm{of}\:−\mathrm{2}{a}\omega^{\mathrm{2}} \:\mathrm{sin}\theta.\:\mathrm{find}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{described}\:\mathrm{by}\:\mathrm{this}\:\mathrm{particle}.\mathrm{Show}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{radial}\:\mathrm{component}\:\mathrm{of}\:\mathrm{the}\:\:\mathrm{acceleration}\:\:\mathrm{of}\:\mathrm{P}\:\mathrm{is}\:−{a}\omega^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{cos}\:\theta\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *