Menu Close

A-particle-starts-from-rest-and-moves-in-a-straight-line-on-a-smooth-horizontal-surface-Its-acceleration-at-time-t-seconds-is-given-by-k-4v-1-ms-2-




Question Number 91149 by Rio Michael last updated on 28/Apr/20
A particle starts from rest and moves in a straight line on a smooth   horizontal surface. Its acceleration at time t seconds is given by                                               k(4v + 1) ms^(−2)   where k is a positve constant and v ms^(−1)  is the speed of the particle.  Given that v = ((e^2 −1)/4) when t = 1.  show that                    v = (1/4)(e^(2t) −1)
Aparticlestartsfromrestandmovesinastraightlineonasmoothhorizontalsurface.Itsaccelerationattimetsecondsisgivenbyk(4v+1)ms2wherekisapositveconstantandvms1isthespeedoftheparticle.Giventhatv=e214whent=1.showthatv=14(e2t1)
Commented by mr W last updated on 28/Apr/20
answer given is wrong
answergiveniswrong
Answered by mr W last updated on 28/Apr/20
a=(dv/dt)=k(4v+1)  (dv/(4v+1))=kdt  ∫(dv/(4v+1))=k∫dt  (1/4)ln (4v+1)=kt+C  (1/4)ln (4×((e^2 −1)/4)+1)=k+C  (1/4)ln (e^2 )=k+C  (1/4)[ln (4v+1)−ln (e^2 )]=k(t−1)  (4v+1)e^(−2) =e^(4k(t−1))   ⇒v=(1/4)[e^(4k(t−1)+2) −1]
a=dvdt=k(4v+1)dv4v+1=kdtdv4v+1=kdt14ln(4v+1)=kt+C14ln(4×e214+1)=k+C14ln(e2)=k+C14[ln(4v+1)ln(e2)]=k(t1)(4v+1)e2=e4k(t1)v=14[e4k(t1)+21]
Commented by Rio Michael last updated on 28/Apr/20
thank you sir,but i have some doubts,  first sir: at t = 1, (1/4)ln(4v + 1) = kt + C is suppose to equal      (1/4)ln(4v + 1) = k + C  don′t understand why it equals C.  also, (1/4)ln(e^2 ) = k + C  ⇒ (1/4)ln(4v + 1) = k + C  how′d you get  (1/4)[ln(4v + 1)−ln(e^2 )] = kt???
thankyousir,butihavesomedoubts,firstsir:att=1,14ln(4v+1)=kt+Cissupposetoequal14ln(4v+1)=k+CdontunderstandwhyitequalsC.also,14ln(e2)=k+C14ln(4v+1)=k+Chowdyouget14[ln(4v+1)ln(e2)]=kt???
Commented by Rio Michael last updated on 28/Apr/20
this is my approach sir,ofcourse from your method.   at rest v= 0    a = k(4v + 1) ms^(−2)  , k >0  a = (dv/dt)  ⇒  (dv/dt) = k(4v+1)    (dv/(4v+1)) = kdt ⇒ ∫(dv/(4v+1)) = k∫dt                                   (1/4)ln (4v + 1) = kt + C  at v = 0, t=0  ⇒ (1/4)ln(4(0) + 1) = C  ⇒ C=0  now t = 1 ⇒ v = ((e^2 −1)/4)  so  (1/4)ln[4(((e^2 −1)/4))+1] = k   ⇒k = 2  (1/4)ln(4v + 1) = 2k ⇒ v = (1/4)(e^(8t) −1)
thisismyapproachsir,ofcoursefromyourmethod.atrestv=0a=k(4v+1)ms2,k>0a=dvdtdvdt=k(4v+1)dv4v+1=kdtdv4v+1=kdt14ln(4v+1)=kt+Catv=0,t=014ln(4(0)+1)=CC=0nowt=1v=e214so14ln[4(e214)+1]=kk=214ln(4v+1)=2kv=14(e8t1)

Leave a Reply

Your email address will not be published. Required fields are marked *