Menu Close

A-particle-starts-from-rest-at-t-0-and-moves-with-uniform-acceleration-Then-1-In-any-time-interval-starting-from-t-0-the-space-average-of-the-velocity-is-4-3-times-of-time-average-velocity-2




Question Number 24687 by Tinkutara last updated on 24/Nov/17
A particle starts from rest at t = 0 and  moves with uniform acceleration. Then  (1) In any time interval starting from  t = 0 the space-average of the velocity  is (4/3) times of time average velocity  (2) If v = v_1  at t = t_1  and v = v_2  at t = t_2   then time average velocity between t_1   and t_2  is ((v_1  + v_2 )/2)  (3) Distance travelled in successive  equal time intervals are in proportion  of 1 : 3 : 5 ... and so on  (4) If v_1 , v_2 , v_3  denote the average  velocities in three successive intervals  of time t_1 , t_2 , t_3  then ((v_1  − v_2 )/(v_2  − v_3 )) = ((t_1  + t_2 )/(t_2  + t_3 ))
Aparticlestartsfromrestatt=0andmoveswithuniformacceleration.Then(1)Inanytimeintervalstartingfromt=0thespaceaverageofthevelocityis43timesoftimeaveragevelocity(2)Ifv=v1att=t1andv=v2att=t2thentimeaveragevelocitybetweent1andt2isv1+v22(3)Distancetravelledinsuccessiveequaltimeintervalsareinproportionof1:3:5andsoon(4)Ifv1,v2,v3denotetheaveragevelocitiesinthreesuccessiveintervalsoftimet1,t2,t3thenv1v2v2v3=t1+t2t2+t3
Answered by ajfour last updated on 25/Nov/17
(1).      (v)_(spaceavg) =((∫vdx)/(Δx))  as   ((vdv)/dx)=a  ⇒    vdx = ((v^2 dv)/a)  so   (v)_(spaceavg) =((∫_0 ^(  v) v^2 dv)/(aΔx))            =(v^3 /(3a(vt/2)))=((2v^2 )/(3at))=(((4at))/(3at))((v/2))    (v)_(space avg) = (4/3)(v)_(time avg)  .  (2).     (v)_(time avg)  =(s/(△t))              =((v_1 △t+(1/2)a(△t)^2 )/(△t))              =v_1 +(1/2)(a△t)              =((2v_1 +(v_2 −v_1 ))/2) =((v_1 +v_2 )/2) .  (3).     s_1 =(1/2)at^2                s_1 +s_2 =(1/2)a(2t)^2 =4s_1   ⇒      s_2  =3s_1         s_1 +s_2 +s_3 =(1/2)a(3t)^2 =9s_1   ⇒       s_3 =5s_1        and so on..  (4).   let velocity at t=t_i   be u              v_1 =u+((at_1 )/2)              v_2 =u+at_1 +((at_2 )/2)  v_1 −v_2 =−(a/2)(t_1 +t_2 )      .....(i)  v_3 =u+at_1 +at_2 +(1/2)at_3   so   v_2 −v_3 =−(a/2)(t_2 +t_3 )   ....(ii)  from (i) and (ii) we get  ((v_1 −v_2 )/(v_2 −v_3 )) =((t_1 +t_2 )/(t_2 +t_3 )) .
(1).(v)spaceavg=vdxΔxasvdvdx=avdx=v2dvaso(v)spaceavg=0vv2dvaΔx=v33a(vt/2)=2v23at=(4at)3at(v2)(v)spaceavg=43(v)timeavg.(2).(v)timeavg=st=v1t+12a(t)2t=v1+12(at)=2v1+(v2v1)2=v1+v22.(3).s1=12at2s1+s2=12a(2t)2=4s1s2=3s1s1+s2+s3=12a(3t)2=9s1s3=5s1andsoon..(4).letvelocityatt=tibeuv1=u+at12v2=u+at1+at22v1v2=a2(t1+t2)..(i)v3=u+at1+at2+12at3sov2v3=a2(t2+t3).(ii)from(i)and(ii)wegetv1v2v2v3=t1+t2t2+t3.
Commented by Tinkutara last updated on 25/Nov/17
Thank you Sir!
ThankyouSir!

Leave a Reply

Your email address will not be published. Required fields are marked *