Menu Close

A-person-stands-in-the-diagonal-produced-of-the-square-base-of-a-church-tower-at-a-distance-2a-from-it-and-observes-the-angle-of-elevation-of-each-of-the-two-outer-corners-of-the-top-of-the-tower-to




Question Number 84651 by ajfour last updated on 14/Mar/20
A person stands in the diagonal  produced of the square base of a  church tower, at a distance 2a  from it, and observes the angle  of elevation of each of the two  outer corners of the top of the  tower to be 30°, while that of the  nearest corner is 45°. Find the  breadth of the tower.
$${A}\:{person}\:{stands}\:{in}\:{the}\:{diagonal} \\ $$$${produced}\:{of}\:{the}\:{square}\:{base}\:{of}\:{a} \\ $$$${church}\:{tower},\:{at}\:{a}\:{distance}\:\mathrm{2}{a} \\ $$$${from}\:{it},\:{and}\:{observes}\:{the}\:{angle} \\ $$$${of}\:{elevation}\:{of}\:{each}\:{of}\:{the}\:{two} \\ $$$${outer}\:{corners}\:{of}\:{the}\:{top}\:{of}\:{the} \\ $$$${tower}\:{to}\:{be}\:\mathrm{30}°,\:{while}\:{that}\:{of}\:{the} \\ $$$${nearest}\:{corner}\:{is}\:\mathrm{45}°.\:{Find}\:{the} \\ $$$${breadth}\:{of}\:{the}\:{tower}. \\ $$
Answered by mr W last updated on 14/Mar/20
b=breadth of tower  h=height of tower  tan 45°=(h/(2a)) ⇒h=2a  h=(√(((b/( (√2))))^2 +((b/( (√2)))+2a)^2 ))tan 30°  2a=(√(((b/( (√2))))^2 +((b/( (√2)))+2a)^2 ))×(1/( (√3)))  12a^2 =2((b/( (√2))))^2 +4a((b/( (√2))))+4a^2   ((b/( (√2))))^2 +2a((b/( (√2))))−4a^2 =0  ((b/( (√2)))+a)^2 =5a^2   (b/( (√2)))+a=(√5)a  ⇒b=((√(10))−(√2))a≈1.748a
$${b}={breadth}\:{of}\:{tower} \\ $$$${h}={height}\:{of}\:{tower} \\ $$$$\mathrm{tan}\:\mathrm{45}°=\frac{{h}}{\mathrm{2}{a}}\:\Rightarrow{h}=\mathrm{2}{a} \\ $$$${h}=\sqrt{\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}+\mathrm{2}{a}\right)^{\mathrm{2}} }\mathrm{tan}\:\mathrm{30}° \\ $$$$\mathrm{2}{a}=\sqrt{\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}+\mathrm{2}{a}\right)^{\mathrm{2}} }×\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{12}{a}^{\mathrm{2}} =\mathrm{2}\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\mathrm{4}{a}\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{4}{a}^{\mathrm{2}} \\ $$$$\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\mathrm{2}{a}\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}\right)−\mathrm{4}{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\frac{{b}}{\:\sqrt{\mathrm{2}}}+{a}\right)^{\mathrm{2}} =\mathrm{5}{a}^{\mathrm{2}} \\ $$$$\frac{{b}}{\:\sqrt{\mathrm{2}}}+{a}=\sqrt{\mathrm{5}}{a} \\ $$$$\Rightarrow{b}=\left(\sqrt{\mathrm{10}}−\sqrt{\mathrm{2}}\right){a}\approx\mathrm{1}.\mathrm{748}{a} \\ $$
Commented by ajfour last updated on 14/Mar/20
correct sir, and well presented,  thanks.
$${correct}\:{sir},\:{and}\:{well}\:{presented}, \\ $$$${thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *