Menu Close

A-plane-is-inclined-at-an-angle-of-30-with-horizontal-Find-the-component-of-a-force-F-10k-N-perpendicular-to-the-plane-Given-that-z-direction-is-vertically-upwards-




Question Number 14923 by Tinkutara last updated on 05/Jun/17
A plane is inclined at an angle of 30°  with horizontal. Find the component  of a force F^→  = −10k^∧ N perpendicular to  the plane. Given that z-direction is  vertically upwards.
$$\mathrm{A}\:\mathrm{plane}\:\mathrm{is}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{30}° \\ $$$$\mathrm{with}\:\mathrm{horizontal}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{component} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{force}\:\overset{\rightarrow} {{F}}\:=\:−\mathrm{10}\overset{\wedge} {{k}}\mathrm{N}\:\mathrm{perpendicular}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{plane}.\:\mathrm{Given}\:\mathrm{that}\:{z}-\mathrm{direction}\:\mathrm{is} \\ $$$$\mathrm{vertically}\:\mathrm{upwards}. \\ $$
Answered by ajfour last updated on 10/Jun/17
F_⊥ ^� =(10cos 30°)(sin 30° i^� −cos 30° k^�  )N       = ((10(√3))/2)((1/2)i^� −((√3)/2) k^�  )N       = ((5(√3))/2)(i^� −(√3) k^�  )N .   ∣F_⊥ ^� ∣=5(√3) N .
$$\bar {{F}}_{\bot} =\left(\mathrm{10cos}\:\mathrm{30}°\right)\left(\mathrm{sin}\:\mathrm{30}°\:\hat {{i}}−\mathrm{cos}\:\mathrm{30}°\:\hat {{k}}\:\right){N} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{10}\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\hat {{i}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\hat {{k}}\:\right){N} \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\hat {{i}}−\sqrt{\mathrm{3}}\:\hat {{k}}\:\right){N}\:. \\ $$$$\:\mid\bar {{F}}_{\bot} \mid=\mathrm{5}\sqrt{\mathrm{3}}\:{N}\:. \\ $$
Commented by Tinkutara last updated on 10/Jun/17
Sir, wouldn′t it will be −5(√3)k^∧  N?
$$\mathrm{Sir},\:\mathrm{wouldn}'\mathrm{t}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be}\:−\mathrm{5}\sqrt{\mathrm{3}}\overset{\wedge} {{k}}\:\mathrm{N}? \\ $$
Commented by ajfour last updated on 10/Jun/17
question is wrongly framed..  if force is ⊥ to incline plane , is   the force along z axis, how is   then the inclined plane oriented ?
$${question}\:{is}\:{wrongly}\:{framed}.. \\ $$$${if}\:{force}\:{is}\:\bot\:{to}\:{incline}\:{plane}\:,\:{is} \\ $$$$\:{the}\:{force}\:{along}\:{z}\:{axis},\:{how}\:{is}\: \\ $$$${then}\:{the}\:{inclined}\:{plane}\:{oriented}\:? \\ $$
Commented by Tinkutara last updated on 10/Jun/17
Why kilo N? I was saying it would be  −5(√3) N or not? (minus sign)
$$\mathrm{Why}\:\mathrm{kilo}\:\mathrm{N}?\:\mathrm{I}\:\mathrm{was}\:\mathrm{saying}\:\mathrm{it}\:\mathrm{would}\:\mathrm{be} \\ $$$$−\mathrm{5}\sqrt{\mathrm{3}}\:\mathrm{N}\:\mathrm{or}\:\mathrm{not}?\:\left(\mathrm{minus}\:\mathrm{sign}\right) \\ $$
Commented by ajfour last updated on 10/Jun/17
if you mention the magnitude  it is 5(√3) N.(no minus sign)  while if the component of the  vertically downward force   perpendicular to the incline plane  to be written in vector form , then   F_⊥ ^� = 5(√3)((1/2)i^� −((√3)/2)k^� ).
$${if}\:{you}\:{mention}\:{the}\:{magnitude} \\ $$$${it}\:{is}\:\mathrm{5}\sqrt{\mathrm{3}}\:{N}.\left({no}\:{minus}\:{sign}\right) \\ $$$${while}\:{if}\:{the}\:{component}\:{of}\:{the} \\ $$$${vertically}\:{downward}\:{force}\: \\ $$$${perpendicular}\:{to}\:{the}\:{incline}\:{plane} \\ $$$${to}\:{be}\:{written}\:{in}\:{vector}\:{form}\:,\:{then} \\ $$$$\:\bar {{F}}_{\bot} =\:\mathrm{5}\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{2}}\hat {{i}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\hat {{k}}\right). \\ $$
Commented by Tinkutara last updated on 11/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *