Menu Close

A-plank-of-mass-10-kg-rests-on-a-smooth-horizontal-surface-Two-blocks-A-and-B-of-masses-m-A-2-kg-and-m-B-1-kg-lies-at-a-distance-of-3-m-on-the-plank-The-friction-coefficient-between-the-blocks




Question Number 21793 by Tinkutara last updated on 04/Oct/17
A plank of mass 10 kg rests on a smooth  horizontal surface. Two blocks A and  B of masses m_A  = 2 kg and m_B  = 1 kg  lies at a distance of 3 m on the plank.  The friction coefficient between the  blocks and plank are μ_A  = 0.3 and μ_B  =  0.1. Now a force F = 15 N is applied to  the plank in horizontal direction. Find  the times (in sec) after which block A  collides with B.
Aplankofmass10kgrestsonasmoothhorizontalsurface.TwoblocksAandBofmassesmA=2kgandmB=1kgliesatadistanceof3montheplank.ThefrictioncoefficientbetweentheblocksandplankareμA=0.3andμB=0.1.NowaforceF=15Nisappliedtotheplankinhorizontaldirection.Findthetimes(insec)afterwhichblockAcollideswithB.
Commented by Tinkutara last updated on 04/Oct/17
Commented by mrW1 last updated on 04/Oct/17
a_A =((μ_A m_A g)/m_A )=μ_A g  a_B =((μ_B m_B g)/m_B )=μ_B g < a_A   Δa=a_A −a_B =(μ_A −μ_B )g  Δs=(1/2)Δat^2   ⇒t=(√((2Δs)/(Δa)))=(√((2Δs)/((μ_A −μ_B )g)))  =(√((2×3)/((0.3−0.1)×10)))  =(√3)  ≈1.73 s    F−μ_A m_A g−μ_B m_B g=Ma  ⇒a=((F−(μ_A m_A +μ_B m_B )g)/M)  =((15−(0.3×2+0.1×1)×10)/(10))  =0.8 m/s^2
aA=μAmAgmA=μAgaB=μBmBgmB=μBg<aAΔa=aAaB=(μAμB)gΔs=12Δat2t=2ΔsΔa=2Δs(μAμB)g=2×3(0.30.1)×10=31.73sFμAmAgμBmBg=Maa=F(μAmA+μBmB)gM=15(0.3×2+0.1×1)×1010=0.8m/s2
Commented by mrW1 last updated on 05/Oct/17
I know the answer was wrong, since  a=0.8 m/s^2  which is less than a_A  and  a_B . that means the plank moves more  slowly than A and B, but this is  contradiction.    therefore I made following consideration:
Iknowtheanswerwaswrong,sincea=0.8m/s2whichislessthanaAandaB.thatmeanstheplankmovesmoreslowlythanAandB,butthisiscontradiction.thereforeImadefollowingconsideration:
Commented by mrW1 last updated on 05/Oct/17
case 1: only block B slides on plank  R_B =μ_B m_B g=m_B a_B   ⇒a_B =μ_B g=0.1×10=1  a_A =a  F−R_B =(M+m_A )a  ⇒a=((F−μ_B m_B g)/(M+m_A ))=((15−0.1×1×10)/(10+2))=(7/6)>a_B =1  R_A =m_A a=2×(7/6)=(7/3)≈2.33 N  μ_A m_A g=0.3×2×10=6 N > R_A   ⇒block A doesn′t slide, ok!    Δa=a_A −a_B =(7/6)−1=(1/6) m/s^2   t=(√((2Δs)/(Δa)))=(√((2×3)/(1/6)))=6 s  ⇒after 6 seconds A meets B.    case 2: both blocks slide on plank  impossible, as shown above    case 3: none of the blocks slides on plank  a_A =a_B =a  F=(M+m_A +m_B )a  ⇒a=(F/(M+m_A +m_B ))=((15)/(10+2+1))=((15)/(13)) m/s^2   R_B =m_B a=1×((15)/(13))≈1.15 N  μ_B m_B g=0.1×1×10=1 N < R_B   ⇒block B muss slide!    ⇒the answer is that only block B slides  on plank. block A keeps in rest on  plank. after 6 sec block A meets B.
case1:onlyblockBslidesonplankRB=μBmBg=mBaBaB=μBg=0.1×10=1aA=aFRB=(M+mA)aa=FμBmBgM+mA=150.1×1×1010+2=76>aB=1RA=mAa=2×76=732.33NμAmAg=0.3×2×10=6N>RAblockAdoesntslide,ok!Δa=aAaB=761=16m/s2t=2ΔsΔa=2×316=6safter6secondsAmeetsB.case2:bothblocksslideonplankimpossible,asshownabovecase3:noneoftheblocksslidesonplankaA=aB=aF=(M+mA+mB)aa=FM+mA+mB=1510+2+1=1513m/s2RB=mBa=1×15131.15NμBmBg=0.1×1×10=1N<RBblockBmussslide!theansweristhatonlyblockBslidesonplank.blockAkeepsinrestonplank.after6secblockAmeetsB.
Commented by mrW1 last updated on 05/Oct/17
a=(F/(M+m_A +m_B ))≥μ_B g  F≥μ_B (M+m_A +m_B )g=0.1×(10+2+1)×10=13 N  that means if F≥13 N, block B slides  on plank.    a=((F−μ_B m_B g)/(M+m_A ))≥μ_A g  F≥[μ_A (M+m_A )+μ_B m_B ]g=[0.3×(10+2)+0.1×1]×10=37 N  that means if F≥37 N, also block A  slides on the plank.    F<13 N ⇒ case 3: no block slides  13 N≤F<37 N ⇒ case 1: only block B slides  F≥37 N ⇒ case 2: both blocks slide    in case 3:  t→∞    in case 2:  t=(√3) sec (see above)    in case 1:  Δa=((F−μ_B m_B g)/(M+m_A ))−μ_B g=((F−μ_B (M+m_A +m_B )g)/(M+m_A ))  t=(√((2Δs)/(Δa)))=(√((2s(M+m_A ))/(F−μ_B (M+m_A +m_B )g)))  =(√((2×3×(10+2))/(F−0.1×(10+2+1)×10)))  =(√((72)/(F−13)))
a=FM+mA+mBμBgFμB(M+mA+mB)g=0.1×(10+2+1)×10=13NthatmeansifF13N,blockBslidesonplank.a=FμBmBgM+mAμAgF[μA(M+mA)+μBmB]g=[0.3×(10+2)+0.1×1]×10=37NthatmeansifF37N,alsoblockAslidesontheplank.F<13Ncase3:noblockslides13NF<37Ncase1:onlyblockBslidesF37Ncase2:bothblocksslideincase3:tincase2:t=3sec(seeabove)incase1:Δa=FμBmBgM+mAμBg=FμB(M+mA+mB)gM+mAt=2ΔsΔa=2s(M+mA)FμB(M+mA+mB)g=2×3×(10+2)F0.1×(10+2+1)×10=72F13
Commented by Tinkutara last updated on 05/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *